Metamath Proof Explorer


Theorem copisnmnd

Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses copisnmnd.b B = Base M
copisnmnd.p + M = x B , y B C
copisnmnd.c φ C B
copisnmnd.n φ 1 < B
Assertion copisnmnd φ M Mnd

Proof

Step Hyp Ref Expression
1 copisnmnd.b B = Base M
2 copisnmnd.p + M = x B , y B C
3 copisnmnd.c φ C B
4 copisnmnd.n φ 1 < B
5 1 fvexi B V
6 5 a1i C B 1 < B B V
7 simpr C B 1 < B 1 < B
8 simpl C B 1 < B C B
9 hashgt12el2 B V 1 < B C B c B C c
10 6 7 8 9 syl3anc C B 1 < B c B C c
11 df-ne C c ¬ C = c
12 11 rexbii c B C c c B ¬ C = c
13 rexnal c B ¬ C = c ¬ c B C = c
14 12 13 bitri c B C c ¬ c B C = c
15 eqidd φ a B c B x B , y B C = x B , y B C
16 eqidd φ a B c B x = a y = c C = C
17 simpr φ a B a B
18 17 adantr φ a B c B a B
19 simpr φ a B c B c B
20 3 adantr φ a B C B
21 20 adantr φ a B c B C B
22 15 16 18 19 21 ovmpod φ a B c B a x B , y B C c = C
23 22 adantr φ a B c B a x B , y B C c = c a x B , y B C c = C
24 simpr φ a B c B a x B , y B C c = c a x B , y B C c = c
25 23 24 eqtr3d φ a B c B a x B , y B C c = c C = c
26 25 ex φ a B c B a x B , y B C c = c C = c
27 26 ralimdva φ a B c B a x B , y B C c = c c B C = c
28 27 rexlimdva φ a B c B a x B , y B C c = c c B C = c
29 28 con3d φ ¬ c B C = c ¬ a B c B a x B , y B C c = c
30 rexnal c B ¬ a x B , y B C c = c ¬ c B a x B , y B C c = c
31 30 bicomi ¬ c B a x B , y B C c = c c B ¬ a x B , y B C c = c
32 31 ralbii a B ¬ c B a x B , y B C c = c a B c B ¬ a x B , y B C c = c
33 ralnex a B ¬ c B a x B , y B C c = c ¬ a B c B a x B , y B C c = c
34 df-ne a x B , y B C c c ¬ a x B , y B C c = c
35 34 bicomi ¬ a x B , y B C c = c a x B , y B C c c
36 35 rexbii c B ¬ a x B , y B C c = c c B a x B , y B C c c
37 36 ralbii a B c B ¬ a x B , y B C c = c a B c B a x B , y B C c c
38 32 33 37 3bitr3i ¬ a B c B a x B , y B C c = c a B c B a x B , y B C c c
39 29 38 syl6ib φ ¬ c B C = c a B c B a x B , y B C c c
40 14 39 syl5bi φ c B C c a B c B a x B , y B C c c
41 10 40 syl5 φ C B 1 < B a B c B a x B , y B C c c
42 3 4 41 mp2and φ a B c B a x B , y B C c c
43 2 eqcomi x B , y B C = + M
44 1 43 isnmnd a B c B a x B , y B C c c M Mnd
45 42 44 syl φ M Mnd