Step |
Hyp |
Ref |
Expression |
1 |
|
copisnmnd.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
copisnmnd.p |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
3 |
|
copisnmnd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
4 |
|
copisnmnd.n |
⊢ ( 𝜑 → 1 < ( ♯ ‘ 𝐵 ) ) |
5 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ V ) |
7 |
|
simpr |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 < ( ♯ ‘ 𝐵 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
9 |
|
hashgt12el2 |
⊢ ( ( 𝐵 ∈ V ∧ 1 < ( ♯ ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 ) |
11 |
|
df-ne |
⊢ ( 𝐶 ≠ 𝑐 ↔ ¬ 𝐶 = 𝑐 ) |
12 |
11
|
rexbii |
⊢ ( ∃ 𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 ↔ ∃ 𝑐 ∈ 𝐵 ¬ 𝐶 = 𝑐 ) |
13 |
|
rexnal |
⊢ ( ∃ 𝑐 ∈ 𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀ 𝑐 ∈ 𝐵 𝐶 = 𝑐 ) |
14 |
12 13
|
bitri |
⊢ ( ∃ 𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 ↔ ¬ ∀ 𝑐 ∈ 𝐵 𝐶 = 𝑐 ) |
15 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) |
16 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑐 ) ) → 𝐶 = 𝐶 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑐 ∈ 𝐵 ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
22 |
15 16 18 19 21
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝐶 ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) → ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝐶 ) |
24 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) → ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) |
25 |
23 24
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) ∧ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) → 𝐶 = 𝑐 ) |
26 |
25
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 → 𝐶 = 𝑐 ) ) |
27 |
26
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 → ∀ 𝑐 ∈ 𝐵 𝐶 = 𝑐 ) ) |
28 |
27
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 → ∀ 𝑐 ∈ 𝐵 𝐶 = 𝑐 ) ) |
29 |
28
|
con3d |
⊢ ( 𝜑 → ( ¬ ∀ 𝑐 ∈ 𝐵 𝐶 = 𝑐 → ¬ ∃ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) ) |
30 |
|
rexnal |
⊢ ( ∃ 𝑐 ∈ 𝐵 ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ¬ ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) |
31 |
30
|
bicomi |
⊢ ( ¬ ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ∃ 𝑐 ∈ 𝐵 ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) |
32 |
31
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐵 ¬ ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) |
33 |
|
ralnex |
⊢ ( ∀ 𝑎 ∈ 𝐵 ¬ ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ¬ ∃ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) |
34 |
|
df-ne |
⊢ ( ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ↔ ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ) |
35 |
34
|
bicomi |
⊢ ( ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) |
36 |
35
|
rexbii |
⊢ ( ∃ 𝑐 ∈ 𝐵 ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) |
37 |
36
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ¬ ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) |
38 |
32 33 37
|
3bitr3i |
⊢ ( ¬ ∃ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) = 𝑐 ↔ ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) |
39 |
29 38
|
syl6ib |
⊢ ( 𝜑 → ( ¬ ∀ 𝑐 ∈ 𝐵 𝐶 = 𝑐 → ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) ) |
40 |
14 39
|
syl5bi |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 → ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) ) |
41 |
10 40
|
syl5 |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐵 ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) ) |
42 |
3 4 41
|
mp2and |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 ) |
43 |
2
|
eqcomi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( +g ‘ 𝑀 ) |
44 |
1 43
|
isnmnd |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑐 ) ≠ 𝑐 → 𝑀 ∉ Mnd ) |
45 |
42 44
|
syl |
⊢ ( 𝜑 → 𝑀 ∉ Mnd ) |