Step |
Hyp |
Ref |
Expression |
1 |
|
oddinmgm.e |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } |
2 |
|
halfnz |
⊢ ¬ ( 1 / 2 ) ∈ ℤ |
3 |
|
eleq1 |
⊢ ( ( 1 / 2 ) = - 𝑥 → ( ( 1 / 2 ) ∈ ℤ ↔ - 𝑥 ∈ ℤ ) ) |
4 |
2 3
|
mtbii |
⊢ ( ( 1 / 2 ) = - 𝑥 → ¬ - 𝑥 ∈ ℤ ) |
5 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
6 |
4 5
|
nsyl3 |
⊢ ( 𝑥 ∈ ℤ → ¬ ( 1 / 2 ) = - 𝑥 ) |
7 |
|
eqcom |
⊢ ( - 𝑥 = ( 1 / 2 ) ↔ ( 1 / 2 ) = - 𝑥 ) |
8 |
6 7
|
sylnibr |
⊢ ( 𝑥 ∈ ℤ → ¬ - 𝑥 = ( 1 / 2 ) ) |
9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
10 |
|
2cn |
⊢ 2 ∈ ℂ |
11 |
|
2ne0 |
⊢ 2 ≠ 0 |
12 |
|
divneg |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 1 / 2 ) = ( - 1 / 2 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( - 1 / 2 ) = - ( 1 / 2 ) ) |
14 |
9 10 11 13
|
mp3an |
⊢ ( - 1 / 2 ) = - ( 1 / 2 ) |
15 |
14
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( - 1 / 2 ) = - ( 1 / 2 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑥 ∈ ℤ → ( ( - 1 / 2 ) = 𝑥 ↔ - ( 1 / 2 ) = 𝑥 ) ) |
17 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
18 |
17
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( 1 / 2 ) ∈ ℂ ) |
19 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
20 |
18 19
|
negcon1d |
⊢ ( 𝑥 ∈ ℤ → ( - ( 1 / 2 ) = 𝑥 ↔ - 𝑥 = ( 1 / 2 ) ) ) |
21 |
16 20
|
bitrd |
⊢ ( 𝑥 ∈ ℤ → ( ( - 1 / 2 ) = 𝑥 ↔ - 𝑥 = ( 1 / 2 ) ) ) |
22 |
8 21
|
mtbird |
⊢ ( 𝑥 ∈ ℤ → ¬ ( - 1 / 2 ) = 𝑥 ) |
23 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
24 |
23
|
a1i |
⊢ ( 𝑥 ∈ ℤ → - 1 ∈ ℂ ) |
25 |
|
2cnd |
⊢ ( 𝑥 ∈ ℤ → 2 ∈ ℂ ) |
26 |
11
|
a1i |
⊢ ( 𝑥 ∈ ℤ → 2 ≠ 0 ) |
27 |
24 19 25 26
|
divmul2d |
⊢ ( 𝑥 ∈ ℤ → ( ( - 1 / 2 ) = 𝑥 ↔ - 1 = ( 2 · 𝑥 ) ) ) |
28 |
22 27
|
mtbid |
⊢ ( 𝑥 ∈ ℤ → ¬ - 1 = ( 2 · 𝑥 ) ) |
29 |
|
eqcom |
⊢ ( 0 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 0 ) |
30 |
29
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( 0 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 0 ) ) |
31 |
|
0cnd |
⊢ ( 𝑥 ∈ ℤ → 0 ∈ ℂ ) |
32 |
|
1cnd |
⊢ ( 𝑥 ∈ ℤ → 1 ∈ ℂ ) |
33 |
25 19
|
mulcld |
⊢ ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℂ ) |
34 |
|
subadd2 |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( 0 − 1 ) = ( 2 · 𝑥 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 0 ) ) |
35 |
34
|
bicomd |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + 1 ) = 0 ↔ ( 0 − 1 ) = ( 2 · 𝑥 ) ) ) |
36 |
31 32 33 35
|
syl3anc |
⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) = 0 ↔ ( 0 − 1 ) = ( 2 · 𝑥 ) ) ) |
37 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
38 |
37
|
eqcomi |
⊢ ( 0 − 1 ) = - 1 |
39 |
38
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( 0 − 1 ) = - 1 ) |
40 |
39
|
eqeq1d |
⊢ ( 𝑥 ∈ ℤ → ( ( 0 − 1 ) = ( 2 · 𝑥 ) ↔ - 1 = ( 2 · 𝑥 ) ) ) |
41 |
30 36 40
|
3bitrd |
⊢ ( 𝑥 ∈ ℤ → ( 0 = ( ( 2 · 𝑥 ) + 1 ) ↔ - 1 = ( 2 · 𝑥 ) ) ) |
42 |
28 41
|
mtbird |
⊢ ( 𝑥 ∈ ℤ → ¬ 0 = ( ( 2 · 𝑥 ) + 1 ) ) |
43 |
42
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) |
44 |
43
|
intnan |
⊢ ¬ ( 0 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) ) |
45 |
|
eqeq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ 0 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑧 = 0 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
47 |
46 1
|
elrab2 |
⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
48 |
44 47
|
mtbir |
⊢ ¬ 0 ∈ 𝑂 |
49 |
48
|
nelir |
⊢ 0 ∉ 𝑂 |