Metamath Proof Explorer


Theorem 0nodd

Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
Assertion 0nodd 0 ∉ 𝑂

Proof

Step Hyp Ref Expression
1 oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
2 halfnz ¬ ( 1 / 2 ) ∈ ℤ
3 eleq1 ( ( 1 / 2 ) = - 𝑥 → ( ( 1 / 2 ) ∈ ℤ ↔ - 𝑥 ∈ ℤ ) )
4 2 3 mtbii ( ( 1 / 2 ) = - 𝑥 → ¬ - 𝑥 ∈ ℤ )
5 znegcl ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ )
6 4 5 nsyl3 ( 𝑥 ∈ ℤ → ¬ ( 1 / 2 ) = - 𝑥 )
7 eqcom ( - 𝑥 = ( 1 / 2 ) ↔ ( 1 / 2 ) = - 𝑥 )
8 6 7 sylnibr ( 𝑥 ∈ ℤ → ¬ - 𝑥 = ( 1 / 2 ) )
9 ax-1cn 1 ∈ ℂ
10 2cn 2 ∈ ℂ
11 2ne0 2 ≠ 0
12 divneg ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 1 / 2 ) = ( - 1 / 2 ) )
13 12 eqcomd ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( - 1 / 2 ) = - ( 1 / 2 ) )
14 9 10 11 13 mp3an ( - 1 / 2 ) = - ( 1 / 2 )
15 14 a1i ( 𝑥 ∈ ℤ → ( - 1 / 2 ) = - ( 1 / 2 ) )
16 15 eqeq1d ( 𝑥 ∈ ℤ → ( ( - 1 / 2 ) = 𝑥 ↔ - ( 1 / 2 ) = 𝑥 ) )
17 halfcn ( 1 / 2 ) ∈ ℂ
18 17 a1i ( 𝑥 ∈ ℤ → ( 1 / 2 ) ∈ ℂ )
19 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
20 18 19 negcon1d ( 𝑥 ∈ ℤ → ( - ( 1 / 2 ) = 𝑥 ↔ - 𝑥 = ( 1 / 2 ) ) )
21 16 20 bitrd ( 𝑥 ∈ ℤ → ( ( - 1 / 2 ) = 𝑥 ↔ - 𝑥 = ( 1 / 2 ) ) )
22 8 21 mtbird ( 𝑥 ∈ ℤ → ¬ ( - 1 / 2 ) = 𝑥 )
23 neg1cn - 1 ∈ ℂ
24 23 a1i ( 𝑥 ∈ ℤ → - 1 ∈ ℂ )
25 2cnd ( 𝑥 ∈ ℤ → 2 ∈ ℂ )
26 11 a1i ( 𝑥 ∈ ℤ → 2 ≠ 0 )
27 24 19 25 26 divmul2d ( 𝑥 ∈ ℤ → ( ( - 1 / 2 ) = 𝑥 ↔ - 1 = ( 2 · 𝑥 ) ) )
28 22 27 mtbid ( 𝑥 ∈ ℤ → ¬ - 1 = ( 2 · 𝑥 ) )
29 eqcom ( 0 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 0 )
30 29 a1i ( 𝑥 ∈ ℤ → ( 0 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 0 ) )
31 0cnd ( 𝑥 ∈ ℤ → 0 ∈ ℂ )
32 1cnd ( 𝑥 ∈ ℤ → 1 ∈ ℂ )
33 25 19 mulcld ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℂ )
34 subadd2 ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( 0 − 1 ) = ( 2 · 𝑥 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 0 ) )
35 34 bicomd ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + 1 ) = 0 ↔ ( 0 − 1 ) = ( 2 · 𝑥 ) ) )
36 31 32 33 35 syl3anc ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) = 0 ↔ ( 0 − 1 ) = ( 2 · 𝑥 ) ) )
37 df-neg - 1 = ( 0 − 1 )
38 37 eqcomi ( 0 − 1 ) = - 1
39 38 a1i ( 𝑥 ∈ ℤ → ( 0 − 1 ) = - 1 )
40 39 eqeq1d ( 𝑥 ∈ ℤ → ( ( 0 − 1 ) = ( 2 · 𝑥 ) ↔ - 1 = ( 2 · 𝑥 ) ) )
41 30 36 40 3bitrd ( 𝑥 ∈ ℤ → ( 0 = ( ( 2 · 𝑥 ) + 1 ) ↔ - 1 = ( 2 · 𝑥 ) ) )
42 28 41 mtbird ( 𝑥 ∈ ℤ → ¬ 0 = ( ( 2 · 𝑥 ) + 1 ) )
43 42 nrex ¬ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 )
44 43 intnan ¬ ( 0 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) )
45 eqeq1 ( 𝑧 = 0 → ( 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ 0 = ( ( 2 · 𝑥 ) + 1 ) ) )
46 45 rexbidv ( 𝑧 = 0 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) ) )
47 46 1 elrab2 ( 0 ∈ 𝑂 ↔ ( 0 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 0 = ( ( 2 · 𝑥 ) + 1 ) ) )
48 44 47 mtbir ¬ 0 ∈ 𝑂
49 48 nelir 0 ∉ 𝑂