Step |
Hyp |
Ref |
Expression |
1 |
|
oddinmgm.e |
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
2 |
|
halfnz |
|- -. ( 1 / 2 ) e. ZZ |
3 |
|
eleq1 |
|- ( ( 1 / 2 ) = -u x -> ( ( 1 / 2 ) e. ZZ <-> -u x e. ZZ ) ) |
4 |
2 3
|
mtbii |
|- ( ( 1 / 2 ) = -u x -> -. -u x e. ZZ ) |
5 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
6 |
4 5
|
nsyl3 |
|- ( x e. ZZ -> -. ( 1 / 2 ) = -u x ) |
7 |
|
eqcom |
|- ( -u x = ( 1 / 2 ) <-> ( 1 / 2 ) = -u x ) |
8 |
6 7
|
sylnibr |
|- ( x e. ZZ -> -. -u x = ( 1 / 2 ) ) |
9 |
|
ax-1cn |
|- 1 e. CC |
10 |
|
2cn |
|- 2 e. CC |
11 |
|
2ne0 |
|- 2 =/= 0 |
12 |
|
divneg |
|- ( ( 1 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( 1 / 2 ) = ( -u 1 / 2 ) ) |
13 |
12
|
eqcomd |
|- ( ( 1 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( -u 1 / 2 ) = -u ( 1 / 2 ) ) |
14 |
9 10 11 13
|
mp3an |
|- ( -u 1 / 2 ) = -u ( 1 / 2 ) |
15 |
14
|
a1i |
|- ( x e. ZZ -> ( -u 1 / 2 ) = -u ( 1 / 2 ) ) |
16 |
15
|
eqeq1d |
|- ( x e. ZZ -> ( ( -u 1 / 2 ) = x <-> -u ( 1 / 2 ) = x ) ) |
17 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
18 |
17
|
a1i |
|- ( x e. ZZ -> ( 1 / 2 ) e. CC ) |
19 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
20 |
18 19
|
negcon1d |
|- ( x e. ZZ -> ( -u ( 1 / 2 ) = x <-> -u x = ( 1 / 2 ) ) ) |
21 |
16 20
|
bitrd |
|- ( x e. ZZ -> ( ( -u 1 / 2 ) = x <-> -u x = ( 1 / 2 ) ) ) |
22 |
8 21
|
mtbird |
|- ( x e. ZZ -> -. ( -u 1 / 2 ) = x ) |
23 |
|
neg1cn |
|- -u 1 e. CC |
24 |
23
|
a1i |
|- ( x e. ZZ -> -u 1 e. CC ) |
25 |
|
2cnd |
|- ( x e. ZZ -> 2 e. CC ) |
26 |
11
|
a1i |
|- ( x e. ZZ -> 2 =/= 0 ) |
27 |
24 19 25 26
|
divmul2d |
|- ( x e. ZZ -> ( ( -u 1 / 2 ) = x <-> -u 1 = ( 2 x. x ) ) ) |
28 |
22 27
|
mtbid |
|- ( x e. ZZ -> -. -u 1 = ( 2 x. x ) ) |
29 |
|
eqcom |
|- ( 0 = ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. x ) + 1 ) = 0 ) |
30 |
29
|
a1i |
|- ( x e. ZZ -> ( 0 = ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. x ) + 1 ) = 0 ) ) |
31 |
|
0cnd |
|- ( x e. ZZ -> 0 e. CC ) |
32 |
|
1cnd |
|- ( x e. ZZ -> 1 e. CC ) |
33 |
25 19
|
mulcld |
|- ( x e. ZZ -> ( 2 x. x ) e. CC ) |
34 |
|
subadd2 |
|- ( ( 0 e. CC /\ 1 e. CC /\ ( 2 x. x ) e. CC ) -> ( ( 0 - 1 ) = ( 2 x. x ) <-> ( ( 2 x. x ) + 1 ) = 0 ) ) |
35 |
34
|
bicomd |
|- ( ( 0 e. CC /\ 1 e. CC /\ ( 2 x. x ) e. CC ) -> ( ( ( 2 x. x ) + 1 ) = 0 <-> ( 0 - 1 ) = ( 2 x. x ) ) ) |
36 |
31 32 33 35
|
syl3anc |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) = 0 <-> ( 0 - 1 ) = ( 2 x. x ) ) ) |
37 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
38 |
37
|
eqcomi |
|- ( 0 - 1 ) = -u 1 |
39 |
38
|
a1i |
|- ( x e. ZZ -> ( 0 - 1 ) = -u 1 ) |
40 |
39
|
eqeq1d |
|- ( x e. ZZ -> ( ( 0 - 1 ) = ( 2 x. x ) <-> -u 1 = ( 2 x. x ) ) ) |
41 |
30 36 40
|
3bitrd |
|- ( x e. ZZ -> ( 0 = ( ( 2 x. x ) + 1 ) <-> -u 1 = ( 2 x. x ) ) ) |
42 |
28 41
|
mtbird |
|- ( x e. ZZ -> -. 0 = ( ( 2 x. x ) + 1 ) ) |
43 |
42
|
nrex |
|- -. E. x e. ZZ 0 = ( ( 2 x. x ) + 1 ) |
44 |
43
|
intnan |
|- -. ( 0 e. ZZ /\ E. x e. ZZ 0 = ( ( 2 x. x ) + 1 ) ) |
45 |
|
eqeq1 |
|- ( z = 0 -> ( z = ( ( 2 x. x ) + 1 ) <-> 0 = ( ( 2 x. x ) + 1 ) ) ) |
46 |
45
|
rexbidv |
|- ( z = 0 -> ( E. x e. ZZ z = ( ( 2 x. x ) + 1 ) <-> E. x e. ZZ 0 = ( ( 2 x. x ) + 1 ) ) ) |
47 |
46 1
|
elrab2 |
|- ( 0 e. O <-> ( 0 e. ZZ /\ E. x e. ZZ 0 = ( ( 2 x. x ) + 1 ) ) ) |
48 |
44 47
|
mtbir |
|- -. 0 e. O |
49 |
48
|
nelir |
|- 0 e/ O |