Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oddinmgm.e | |
|
Assertion | 0nodd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddinmgm.e | |
|
2 | halfnz | |
|
3 | eleq1 | |
|
4 | 2 3 | mtbii | |
5 | znegcl | |
|
6 | 4 5 | nsyl3 | |
7 | eqcom | |
|
8 | 6 7 | sylnibr | |
9 | ax-1cn | |
|
10 | 2cn | |
|
11 | 2ne0 | |
|
12 | divneg | |
|
13 | 12 | eqcomd | |
14 | 9 10 11 13 | mp3an | |
15 | 14 | a1i | |
16 | 15 | eqeq1d | |
17 | halfcn | |
|
18 | 17 | a1i | |
19 | zcn | |
|
20 | 18 19 | negcon1d | |
21 | 16 20 | bitrd | |
22 | 8 21 | mtbird | |
23 | neg1cn | |
|
24 | 23 | a1i | |
25 | 2cnd | |
|
26 | 11 | a1i | |
27 | 24 19 25 26 | divmul2d | |
28 | 22 27 | mtbid | |
29 | eqcom | |
|
30 | 29 | a1i | |
31 | 0cnd | |
|
32 | 1cnd | |
|
33 | 25 19 | mulcld | |
34 | subadd2 | |
|
35 | 34 | bicomd | |
36 | 31 32 33 35 | syl3anc | |
37 | df-neg | |
|
38 | 37 | eqcomi | |
39 | 38 | a1i | |
40 | 39 | eqeq1d | |
41 | 30 36 40 | 3bitrd | |
42 | 28 41 | mtbird | |
43 | 42 | nrex | |
44 | 43 | intnan | |
45 | eqeq1 | |
|
46 | 45 | rexbidv | |
47 | 46 1 | elrab2 | |
48 | 44 47 | mtbir | |
49 | 48 | nelir | |