| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddinmgm.e |
|
| 2 |
|
halfnz |
|
| 3 |
|
eleq1 |
|
| 4 |
2 3
|
mtbii |
|
| 5 |
|
znegcl |
|
| 6 |
4 5
|
nsyl3 |
|
| 7 |
|
eqcom |
|
| 8 |
6 7
|
sylnibr |
|
| 9 |
|
ax-1cn |
|
| 10 |
|
2cn |
|
| 11 |
|
2ne0 |
|
| 12 |
|
divneg |
|
| 13 |
12
|
eqcomd |
|
| 14 |
9 10 11 13
|
mp3an |
|
| 15 |
14
|
a1i |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
|
halfcn |
|
| 18 |
17
|
a1i |
|
| 19 |
|
zcn |
|
| 20 |
18 19
|
negcon1d |
|
| 21 |
16 20
|
bitrd |
|
| 22 |
8 21
|
mtbird |
|
| 23 |
|
neg1cn |
|
| 24 |
23
|
a1i |
|
| 25 |
|
2cnd |
|
| 26 |
11
|
a1i |
|
| 27 |
24 19 25 26
|
divmul2d |
|
| 28 |
22 27
|
mtbid |
|
| 29 |
|
eqcom |
|
| 30 |
29
|
a1i |
|
| 31 |
|
0cnd |
|
| 32 |
|
1cnd |
|
| 33 |
25 19
|
mulcld |
|
| 34 |
|
subadd2 |
|
| 35 |
34
|
bicomd |
|
| 36 |
31 32 33 35
|
syl3anc |
|
| 37 |
|
df-neg |
|
| 38 |
37
|
eqcomi |
|
| 39 |
38
|
a1i |
|
| 40 |
39
|
eqeq1d |
|
| 41 |
30 36 40
|
3bitrd |
|
| 42 |
28 41
|
mtbird |
|
| 43 |
42
|
nrex |
|
| 44 |
43
|
intnan |
|
| 45 |
|
eqeq1 |
|
| 46 |
45
|
rexbidv |
|
| 47 |
46 1
|
elrab2 |
|
| 48 |
44 47
|
mtbir |
|
| 49 |
48
|
nelir |
|