Metamath Proof Explorer


Theorem 0nodd

Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e O=z|xz=2x+1
Assertion 0nodd 0O

Proof

Step Hyp Ref Expression
1 oddinmgm.e O=z|xz=2x+1
2 halfnz ¬12
3 eleq1 12=x12x
4 2 3 mtbii 12=x¬x
5 znegcl xx
6 4 5 nsyl3 x¬12=x
7 eqcom x=1212=x
8 6 7 sylnibr x¬x=12
9 ax-1cn 1
10 2cn 2
11 2ne0 20
12 divneg 122012=12
13 12 eqcomd 122012=12
14 9 10 11 13 mp3an 12=12
15 14 a1i x12=12
16 15 eqeq1d x12=x12=x
17 halfcn 12
18 17 a1i x12
19 zcn xx
20 18 19 negcon1d x12=xx=12
21 16 20 bitrd x12=xx=12
22 8 21 mtbird x¬12=x
23 neg1cn 1
24 23 a1i x1
25 2cnd x2
26 11 a1i x20
27 24 19 25 26 divmul2d x12=x1=2x
28 22 27 mtbid x¬1=2x
29 eqcom 0=2x+12x+1=0
30 29 a1i x0=2x+12x+1=0
31 0cnd x0
32 1cnd x1
33 25 19 mulcld x2x
34 subadd2 012x01=2x2x+1=0
35 34 bicomd 012x2x+1=001=2x
36 31 32 33 35 syl3anc x2x+1=001=2x
37 df-neg 1=01
38 37 eqcomi 01=1
39 38 a1i x01=1
40 39 eqeq1d x01=2x1=2x
41 30 36 40 3bitrd x0=2x+11=2x
42 28 41 mtbird x¬0=2x+1
43 42 nrex ¬x0=2x+1
44 43 intnan ¬0x0=2x+1
45 eqeq1 z=0z=2x+10=2x+1
46 45 rexbidv z=0xz=2x+1x0=2x+1
47 46 1 elrab2 0O0x0=2x+1
48 44 47 mtbir ¬0O
49 48 nelir 0O