Metamath Proof Explorer


Theorem copsgndif

Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019) (Revised by AV, 5-Jul-2022)

Ref Expression
Hypotheses copsgndif.p P = Base SymGrp N
copsgndif.s S = pmSgn N
copsgndif.z Z = pmSgn N K
Assertion copsgndif N Fin K N Q q P | q K = K Y Z Q N K = Y S Q

Proof

Step Hyp Ref Expression
1 copsgndif.p P = Base SymGrp N
2 copsgndif.s S = pmSgn N
3 copsgndif.z Z = pmSgn N K
4 1 2 3 psgndif N Fin K N Q q P | q K = K Z Q N K = S Q
5 4 imp N Fin K N Q q P | q K = K Z Q N K = S Q
6 5 fveq2d N Fin K N Q q P | q K = K Y Z Q N K = Y S Q
7 diffi N Fin N K Fin
8 7 ad2antrr N Fin K N Q q P | q K = K N K Fin
9 eqid q P | q K = K = q P | q K = K
10 eqid Base SymGrp N K = Base SymGrp N K
11 eqid N K = N K
12 1 9 10 11 symgfixelsi K N Q q P | q K = K Q N K Base SymGrp N K
13 12 adantll N Fin K N Q q P | q K = K Q N K Base SymGrp N K
14 10 3 cofipsgn N K Fin Q N K Base SymGrp N K Y Z Q N K = Y Z Q N K
15 8 13 14 syl2anc N Fin K N Q q P | q K = K Y Z Q N K = Y Z Q N K
16 elrabi Q q P | q K = K Q P
17 1 2 cofipsgn N Fin Q P Y S Q = Y S Q
18 16 17 sylan2 N Fin Q q P | q K = K Y S Q = Y S Q
19 18 adantlr N Fin K N Q q P | q K = K Y S Q = Y S Q
20 6 15 19 3eqtr4d N Fin K N Q q P | q K = K Y Z Q N K = Y S Q
21 20 ex N Fin K N Q q P | q K = K Y Z Q N K = Y S Q