Metamath Proof Explorer


Theorem cos02pilt1

Description: Cosine is less than one between zero and 2 x. _pi . (Contributed by Jim Kingdon, 23-Mar-2024)

Ref Expression
Assertion cos02pilt1 A02πcosA<1

Proof

Step Hyp Ref Expression
1 elioore A02πA
2 1 recoscld A02πcosA
3 1red A02π1
4 cosbnd A1cosAcosA1
5 4 simprd AcosA1
6 1 5 syl A02πcosA1
7 0zd A02π0
8 2re 2
9 pire π
10 8 9 remulcli 2π
11 10 a1i A02π2π
12 0xr 0*
13 10 rexri 2π*
14 elioo2 0*2π*A02πA0<AA<2π
15 12 13 14 mp2an A02πA0<AA<2π
16 15 simp2bi A02π0<A
17 2rp 2+
18 pirp π+
19 rpmulcl 2+π+2π+
20 17 18 19 mp2an 2π+
21 rpgt0 2π+0<2π
22 20 21 mp1i A02π0<2π
23 1 11 16 22 divgt0d A02π0<A2π
24 20 a1i A02π2π+
25 15 simp3bi A02πA<2π
26 1 11 24 25 ltdiv1dd A02πA2π<2π2π
27 11 recnd A02π2π
28 22 gt0ne0d A02π2π0
29 27 28 dividd A02π2π2π=1
30 26 29 breqtrd A02πA2π<1
31 0p1e1 0+1=1
32 30 31 breqtrrdi A02πA2π<0+1
33 btwnnz 00<A2πA2π<0+1¬A2π
34 7 23 32 33 syl3anc A02π¬A2π
35 1 recnd A02πA
36 coseq1 AcosA=1A2π
37 35 36 syl A02πcosA=1A2π
38 34 37 mtbird A02π¬cosA=1
39 38 neqned A02πcosA1
40 39 necomd A02π1cosA
41 2 3 6 40 leneltd A02πcosA<1