| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 𝐴 ∈ ℝ ) |
| 2 |
1
|
recoscld |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
|
1red |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 1 ∈ ℝ ) |
| 4 |
|
cosbnd |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) |
| 5 |
4
|
simprd |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ≤ 1 ) |
| 6 |
1 5
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) ≤ 1 ) |
| 7 |
|
0zd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 ∈ ℤ ) |
| 8 |
|
2re |
⊢ 2 ∈ ℝ |
| 9 |
|
pire |
⊢ π ∈ ℝ |
| 10 |
8 9
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ∈ ℝ ) |
| 12 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 13 |
10
|
rexri |
⊢ ( 2 · π ) ∈ ℝ* |
| 14 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 2 · π ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) ) |
| 15 |
12 13 14
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) |
| 16 |
15
|
simp2bi |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 < 𝐴 ) |
| 17 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 18 |
|
pirp |
⊢ π ∈ ℝ+ |
| 19 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
| 20 |
17 18 19
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
| 21 |
|
rpgt0 |
⊢ ( ( 2 · π ) ∈ ℝ+ → 0 < ( 2 · π ) ) |
| 22 |
20 21
|
mp1i |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 < ( 2 · π ) ) |
| 23 |
1 11 16 22
|
divgt0d |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 < ( 𝐴 / ( 2 · π ) ) ) |
| 24 |
20
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ∈ ℝ+ ) |
| 25 |
15
|
simp3bi |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 𝐴 < ( 2 · π ) ) |
| 26 |
1 11 24 25
|
ltdiv1dd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 𝐴 / ( 2 · π ) ) < ( ( 2 · π ) / ( 2 · π ) ) ) |
| 27 |
11
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ∈ ℂ ) |
| 28 |
22
|
gt0ne0d |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ≠ 0 ) |
| 29 |
27 28
|
dividd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( ( 2 · π ) / ( 2 · π ) ) = 1 ) |
| 30 |
26 29
|
breqtrd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 𝐴 / ( 2 · π ) ) < 1 ) |
| 31 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 32 |
30 31
|
breqtrrdi |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 𝐴 / ( 2 · π ) ) < ( 0 + 1 ) ) |
| 33 |
|
btwnnz |
⊢ ( ( 0 ∈ ℤ ∧ 0 < ( 𝐴 / ( 2 · π ) ) ∧ ( 𝐴 / ( 2 · π ) ) < ( 0 + 1 ) ) → ¬ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) |
| 34 |
7 23 32 33
|
syl3anc |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ¬ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) |
| 35 |
1
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 𝐴 ∈ ℂ ) |
| 36 |
|
coseq1 |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
| 38 |
34 37
|
mtbird |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ¬ ( cos ‘ 𝐴 ) = 1 ) |
| 39 |
38
|
neqned |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) ≠ 1 ) |
| 40 |
39
|
necomd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 1 ≠ ( cos ‘ 𝐴 ) ) |
| 41 |
2 3 6 40
|
leneltd |
⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |