Metamath Proof Explorer


Theorem cos0pilt1

Description: Cosine is between minus one and one on the open interval between zero and _pi . (Contributed by Jim Kingdon, 7-May-2024)

Ref Expression
Assertion cos0pilt1 A0πcosA11

Proof

Step Hyp Ref Expression
1 elioore A0πA
2 1 recoscld A0πcosA
3 cospi cosπ=1
4 ioossicc 0π0π
5 4 sseli A0πA0π
6 0xr 0*
7 pire π
8 7 rexri π*
9 0re 0
10 pipos 0<π
11 9 7 10 ltleii 0π
12 ubicc2 0*π*0ππ0π
13 6 8 11 12 mp3an π0π
14 13 a1i A0ππ0π
15 eliooord A0π0<AA<π
16 15 simprd A0πA<π
17 5 14 16 cosordlem A0πcosπ<cosA
18 3 17 eqbrtrrid A0π1<cosA
19 2re 2
20 19 7 remulcli 2π
21 20 rexri 2π*
22 1le2 12
23 lemulge12 π20π12π2π
24 7 19 11 22 23 mp4an π2π
25 iooss2 2π*π2π0π02π
26 21 24 25 mp2an 0π02π
27 26 sseli A0πA02π
28 cos02pilt1 A02πcosA<1
29 27 28 syl A0πcosA<1
30 neg1rr 1
31 30 rexri 1*
32 1re 1
33 32 rexri 1*
34 elioo2 1*1*cosA11cosA1<cosAcosA<1
35 31 33 34 mp2an cosA11cosA1<cosAcosA<1
36 2 18 29 35 syl3anbrc A0πcosA11