Metamath Proof Explorer


Theorem cos0pilt1

Description: Cosine is between minus one and one on the open interval between zero and _pi . (Contributed by Jim Kingdon, 7-May-2024)

Ref Expression
Assertion cos0pilt1 A 0 π cos A 1 1

Proof

Step Hyp Ref Expression
1 elioore A 0 π A
2 1 recoscld A 0 π cos A
3 cospi cos π = 1
4 ioossicc 0 π 0 π
5 4 sseli A 0 π A 0 π
6 0xr 0 *
7 pire π
8 7 rexri π *
9 0re 0
10 pipos 0 < π
11 9 7 10 ltleii 0 π
12 ubicc2 0 * π * 0 π π 0 π
13 6 8 11 12 mp3an π 0 π
14 13 a1i A 0 π π 0 π
15 eliooord A 0 π 0 < A A < π
16 15 simprd A 0 π A < π
17 5 14 16 cosordlem A 0 π cos π < cos A
18 3 17 eqbrtrrid A 0 π 1 < cos A
19 2re 2
20 19 7 remulcli 2 π
21 20 rexri 2 π *
22 1le2 1 2
23 lemulge12 π 2 0 π 1 2 π 2 π
24 7 19 11 22 23 mp4an π 2 π
25 iooss2 2 π * π 2 π 0 π 0 2 π
26 21 24 25 mp2an 0 π 0 2 π
27 26 sseli A 0 π A 0 2 π
28 cos02pilt1 A 0 2 π cos A < 1
29 27 28 syl A 0 π cos A < 1
30 neg1rr 1
31 30 rexri 1 *
32 1re 1
33 32 rexri 1 *
34 elioo2 1 * 1 * cos A 1 1 cos A 1 < cos A cos A < 1
35 31 33 34 mp2an cos A 1 1 cos A 1 < cos A cos A < 1
36 2 18 29 35 syl3anbrc A 0 π cos A 1 1