Metamath Proof Explorer


Theorem cos2t3rdpi

Description: The cosine of 2 x. ( _pi / 3 ) is -u 1 / 2 . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion cos2t3rdpi cos 2 π 3 = 1 2

Proof

Step Hyp Ref Expression
1 3cn 3
2 ax-1cn 1
3 picn π
4 3ne0 3 0
5 3 1 4 divcli π 3
6 1 2 5 subdiri 3 1 π 3 = 3 π 3 1 π 3
7 3m1e2 3 1 = 2
8 7 oveq1i 3 1 π 3 = 2 π 3
9 3 1 4 divcan2i 3 π 3 = π
10 5 mullidi 1 π 3 = π 3
11 9 10 oveq12i 3 π 3 1 π 3 = π π 3
12 6 8 11 3eqtr3i 2 π 3 = π π 3
13 12 fveq2i cos 2 π 3 = cos π π 3
14 cospim π 3 cos π π 3 = cos π 3
15 5 14 ax-mp cos π π 3 = cos π 3
16 sincos3rdpi sin π 3 = 3 2 cos π 3 = 1 2
17 16 simpri cos π 3 = 1 2
18 17 negeqi cos π 3 = 1 2
19 13 15 18 3eqtri cos 2 π 3 = 1 2