Metamath Proof Explorer


Theorem cosmul

Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)

Ref Expression
Assertion cosmul ABcosAcosB=cosAB+cosA+B2

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 coscl BcosB
3 mulcl cosAcosBcosAcosB
4 1 2 3 syl2an ABcosAcosB
5 2cnne0 220
6 3anass cosAcosB220cosAcosB220
7 4 5 6 sylanblrc ABcosAcosB220
8 divcan3 cosAcosB2202cosAcosB2=cosAcosB
9 7 8 syl AB2cosAcosB2=cosAcosB
10 sincl AsinA
11 sincl BsinB
12 mulcl sinAsinBsinAsinB
13 10 11 12 syl2an ABsinAsinB
14 4 13 4 ppncand ABcosAcosB+sinAsinB+cosAcosBsinAsinB=cosAcosB+cosAcosB
15 cossub ABcosAB=cosAcosB+sinAsinB
16 cosadd ABcosA+B=cosAcosBsinAsinB
17 15 16 oveq12d ABcosAB+cosA+B=cosAcosB+sinAsinB+cosAcosBsinAsinB
18 4 2timesd AB2cosAcosB=cosAcosB+cosAcosB
19 14 17 18 3eqtr4rd AB2cosAcosB=cosAB+cosA+B
20 19 oveq1d AB2cosAcosB2=cosAB+cosA+B2
21 9 20 eqtr3d ABcosAcosB=cosAB+cosA+B2