Metamath Proof Explorer


Theorem cosq14ge0

Description: The cosine of a number between -upi / 2 and pi / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion cosq14ge0 Aπ2π20cosA

Proof

Step Hyp Ref Expression
1 halfpire π2
2 neghalfpire π2
3 2 1 elicc2i Aπ2π2Aπ2AAπ2
4 3 simp1bi Aπ2π2A
5 resubcl π2Aπ2A
6 1 4 5 sylancr Aπ2π2π2A
7 3 simp3bi Aπ2π2Aπ2
8 subge0 π2A0π2AAπ2
9 1 4 8 sylancr Aπ2π20π2AAπ2
10 7 9 mpbird Aπ2π20π2A
11 picn π
12 halfcl ππ2
13 11 12 ax-mp π2
14 13 negcli π2
15 11 13 negsubi π+π2=ππ2
16 pidiv2halves π2+π2=π
17 11 13 13 16 subaddrii ππ2=π2
18 15 17 eqtri π+π2=π2
19 13 11 14 18 subaddrii π2π=π2
20 3 simp2bi Aπ2π2π2A
21 19 20 eqbrtrid Aπ2π2π2πA
22 pire π
23 suble π2Aππ2Aππ2πA
24 1 22 23 mp3an13 Aπ2Aππ2πA
25 4 24 syl Aπ2π2π2Aππ2πA
26 21 25 mpbird Aπ2π2π2Aπ
27 0re 0
28 27 22 elicc2i π2A0ππ2A0π2Aπ2Aπ
29 6 10 26 28 syl3anbrc Aπ2π2π2A0π
30 sinq12ge0 π2A0π0sinπ2A
31 29 30 syl Aπ2π20sinπ2A
32 4 recnd Aπ2π2A
33 sinhalfpim Asinπ2A=cosA
34 32 33 syl Aπ2π2sinπ2A=cosA
35 31 34 breqtrd Aπ2π20cosA