Metamath Proof Explorer


Theorem coss0

Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019)

Ref Expression
Assertion coss0 =

Proof

Step Hyp Ref Expression
1 dfcoss2 =yz|xyxzx
2 ec0 x=
3 2 eleq2i yxy
4 2 eleq2i zxz
5 3 4 anbi12i yxzxyz
6 5 exbii xyxzxxyz
7 19.9v xyzyz
8 6 7 bitri xyxzxyz
9 8 opabbii yz|xyxzx=yz|yz
10 prnzg yVyz
11 10 elv yz
12 ss0b yzyz=
13 11 12 nemtbir ¬yz
14 prssg yVzVyzyz
15 14 el2v yzyz
16 13 15 mtbir ¬yz
17 16 opabf yz|yz=
18 1 9 17 3eqtri =