Metamath Proof Explorer


Theorem cotrtrclfv

Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion cotrtrclfv RVRRRt+R=R

Proof

Step Hyp Ref Expression
1 trclfv RVt+R=r|Rrrrr
2 1 adantr RVRRRt+R=r|Rrrrr
3 simpr RVRRRRRR
4 ssid RR
5 3 4 jctil RVRRRRRRRR
6 trcleq2lem r=RRrrrrRRRRR
7 6 elabg RVRr|RrrrrRRRRR
8 7 adantr RVRRRRr|RrrrrRRRRR
9 5 8 mpbird RVRRRRr|Rrrrr
10 intss1 Rr|Rrrrrr|RrrrrR
11 9 10 syl RVRRRr|RrrrrR
12 2 11 eqsstrd RVRRRt+RR
13 trclfvlb RVRt+R
14 13 adantr RVRRRRt+R
15 12 14 eqssd RVRRRt+R=R