Database
REAL AND COMPLEX NUMBERS
Reflexive and transitive closures of relations
Definitions and basic properties of transitive closures
cotrtrclfv
Next ⟩
trclidm
Metamath Proof Explorer
Ascii
Unicode
Theorem
cotrtrclfv
Description:
The transitive closure of a transitive relation.
(Contributed by
RP
, 28-Apr-2020)
Ref
Expression
Assertion
cotrtrclfv
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
t+
⁡
R
=
R
Proof
Step
Hyp
Ref
Expression
1
trclfv
⊢
R
∈
V
→
t+
⁡
R
=
⋂
r
|
R
⊆
r
∧
r
∘
r
⊆
r
2
1
adantr
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
t+
⁡
R
=
⋂
r
|
R
⊆
r
∧
r
∘
r
⊆
r
3
simpr
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
R
∘
R
⊆
R
4
ssid
⊢
R
⊆
R
5
3
4
jctil
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
R
⊆
R
∧
R
∘
R
⊆
R
6
trcleq2lem
⊢
r
=
R
→
R
⊆
r
∧
r
∘
r
⊆
r
↔
R
⊆
R
∧
R
∘
R
⊆
R
7
6
elabg
⊢
R
∈
V
→
R
∈
r
|
R
⊆
r
∧
r
∘
r
⊆
r
↔
R
⊆
R
∧
R
∘
R
⊆
R
8
7
adantr
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
R
∈
r
|
R
⊆
r
∧
r
∘
r
⊆
r
↔
R
⊆
R
∧
R
∘
R
⊆
R
9
5
8
mpbird
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
R
∈
r
|
R
⊆
r
∧
r
∘
r
⊆
r
10
intss1
⊢
R
∈
r
|
R
⊆
r
∧
r
∘
r
⊆
r
→
⋂
r
|
R
⊆
r
∧
r
∘
r
⊆
r
⊆
R
11
9
10
syl
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
⋂
r
|
R
⊆
r
∧
r
∘
r
⊆
r
⊆
R
12
2
11
eqsstrd
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
t+
⁡
R
⊆
R
13
trclfvlb
⊢
R
∈
V
→
R
⊆
t+
⁡
R
14
13
adantr
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
R
⊆
t+
⁡
R
15
12
14
eqssd
⊢
R
∈
V
∧
R
∘
R
⊆
R
→
t+
⁡
R
=
R