Metamath Proof Explorer


Theorem cotrtrclfv

Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion cotrtrclfv R V R R R t+ R = R

Proof

Step Hyp Ref Expression
1 trclfv R V t+ R = r | R r r r r
2 1 adantr R V R R R t+ R = r | R r r r r
3 simpr R V R R R R R R
4 ssid R R
5 3 4 jctil R V R R R R R R R R
6 trcleq2lem r = R R r r r r R R R R R
7 6 elabg R V R r | R r r r r R R R R R
8 7 adantr R V R R R R r | R r r r r R R R R R
9 5 8 mpbird R V R R R R r | R r r r r
10 intss1 R r | R r r r r r | R r r r r R
11 9 10 syl R V R R R r | R r r r r R
12 2 11 eqsstrd R V R R R t+ R R
13 trclfvlb R V R t+ R
14 13 adantr R V R R R R t+ R
15 12 14 eqssd R V R R R t+ R = R