| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
|
| 2 |
|
cphipcj.v |
|
| 3 |
|
cphsubdir.m |
|
| 4 |
|
cph2subdi.1 |
|
| 5 |
|
cph2subdi.2 |
|
| 6 |
|
cph2subdi.3 |
|
| 7 |
|
cph2subdi.4 |
|
| 8 |
|
cph2subdi.5 |
|
| 9 |
|
cphclm |
|
| 10 |
4 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
11
|
clmadd |
|
| 13 |
10 12
|
syl |
|
| 14 |
13
|
oveqd |
|
| 15 |
13
|
oveqd |
|
| 16 |
14 15
|
oveq12d |
|
| 17 |
|
cphphl |
|
| 18 |
4 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
11 1 2 19
|
ipcl |
|
| 21 |
18 5 7 20
|
syl3anc |
|
| 22 |
11 1 2 19
|
ipcl |
|
| 23 |
18 6 8 22
|
syl3anc |
|
| 24 |
11 19
|
clmacl |
|
| 25 |
10 21 23 24
|
syl3anc |
|
| 26 |
11 1 2 19
|
ipcl |
|
| 27 |
18 5 8 26
|
syl3anc |
|
| 28 |
11 1 2 19
|
ipcl |
|
| 29 |
18 6 7 28
|
syl3anc |
|
| 30 |
11 19
|
clmacl |
|
| 31 |
10 27 29 30
|
syl3anc |
|
| 32 |
11 19
|
clmsub |
|
| 33 |
10 25 31 32
|
syl3anc |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
11 1 2 3 34 35 18 5 6 7 8
|
ip2subdi |
|
| 37 |
16 33 36
|
3eqtr4rd |
|