Metamath Proof Explorer


Theorem cph2subdi

Description: Distributive law for inner product subtraction. Complex version of ip2subdi . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
cphsubdir.m - ˙ = - W
cph2subdi.1 φ W CPreHil
cph2subdi.2 φ A V
cph2subdi.3 φ B V
cph2subdi.4 φ C V
cph2subdi.5 φ D V
Assertion cph2subdi φ A - ˙ B , ˙ C - ˙ D = A , ˙ C + B , ˙ D - A , ˙ D + B , ˙ C

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 cphsubdir.m - ˙ = - W
4 cph2subdi.1 φ W CPreHil
5 cph2subdi.2 φ A V
6 cph2subdi.3 φ B V
7 cph2subdi.4 φ C V
8 cph2subdi.5 φ D V
9 cphclm W CPreHil W CMod
10 4 9 syl φ W CMod
11 eqid Scalar W = Scalar W
12 11 clmadd W CMod + = + Scalar W
13 10 12 syl φ + = + Scalar W
14 13 oveqd φ A , ˙ C + B , ˙ D = A , ˙ C + Scalar W B , ˙ D
15 13 oveqd φ A , ˙ D + B , ˙ C = A , ˙ D + Scalar W B , ˙ C
16 14 15 oveq12d φ A , ˙ C + B , ˙ D - Scalar W A , ˙ D + B , ˙ C = A , ˙ C + Scalar W B , ˙ D - Scalar W A , ˙ D + Scalar W B , ˙ C
17 cphphl W CPreHil W PreHil
18 4 17 syl φ W PreHil
19 eqid Base Scalar W = Base Scalar W
20 11 1 2 19 ipcl W PreHil A V C V A , ˙ C Base Scalar W
21 18 5 7 20 syl3anc φ A , ˙ C Base Scalar W
22 11 1 2 19 ipcl W PreHil B V D V B , ˙ D Base Scalar W
23 18 6 8 22 syl3anc φ B , ˙ D Base Scalar W
24 11 19 clmacl W CMod A , ˙ C Base Scalar W B , ˙ D Base Scalar W A , ˙ C + B , ˙ D Base Scalar W
25 10 21 23 24 syl3anc φ A , ˙ C + B , ˙ D Base Scalar W
26 11 1 2 19 ipcl W PreHil A V D V A , ˙ D Base Scalar W
27 18 5 8 26 syl3anc φ A , ˙ D Base Scalar W
28 11 1 2 19 ipcl W PreHil B V C V B , ˙ C Base Scalar W
29 18 6 7 28 syl3anc φ B , ˙ C Base Scalar W
30 11 19 clmacl W CMod A , ˙ D Base Scalar W B , ˙ C Base Scalar W A , ˙ D + B , ˙ C Base Scalar W
31 10 27 29 30 syl3anc φ A , ˙ D + B , ˙ C Base Scalar W
32 11 19 clmsub W CMod A , ˙ C + B , ˙ D Base Scalar W A , ˙ D + B , ˙ C Base Scalar W A , ˙ C + B , ˙ D - A , ˙ D + B , ˙ C = A , ˙ C + B , ˙ D - Scalar W A , ˙ D + B , ˙ C
33 10 25 31 32 syl3anc φ A , ˙ C + B , ˙ D - A , ˙ D + B , ˙ C = A , ˙ C + B , ˙ D - Scalar W A , ˙ D + B , ˙ C
34 eqid - Scalar W = - Scalar W
35 eqid + Scalar W = + Scalar W
36 11 1 2 3 34 35 18 5 6 7 8 ip2subdi φ A - ˙ B , ˙ C - ˙ D = A , ˙ C + Scalar W B , ˙ D - Scalar W A , ˙ D + Scalar W B , ˙ C
37 16 33 36 3eqtr4rd φ A - ˙ B , ˙ C - ˙ D = A , ˙ C + B , ˙ D - A , ˙ D + B , ˙ C