Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cplgrop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | iscplgredg | |
4 | edgval | |
|
5 | 4 | a1i | |
6 | simpl | |
|
7 | 6 | adantl | |
8 | 6 | difeq1d | |
9 | 8 | adantl | |
10 | edgval | |
|
11 | simpr | |
|
12 | 11 | rneqd | |
13 | 10 12 | eqtrid | |
14 | 13 | adantl | |
15 | simpl | |
|
16 | 14 15 | eqtr4d | |
17 | 16 | rexeqdv | |
18 | 9 17 | raleqbidv | |
19 | 7 18 | raleqbidv | |
20 | 19 | biimpar | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | iscplgredg | |
24 | 23 | elv | |
25 | 20 24 | sylibr | |
26 | 25 | expcom | |
27 | 26 | expd | |
28 | 5 27 | syl5com | |
29 | 3 28 | sylbid | |
30 | 29 | pm2.43i | |
31 | 30 | alrimiv | |
32 | fvexd | |
|
33 | fvexd | |
|
34 | 31 32 33 | gropeld | |