Metamath Proof Explorer


Theorem cramerlem3

Description: Lemma 3 for cramer . (Contributed by AV, 21-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramer.a A=NMatR
cramer.b B=BaseA
cramer.v V=BaseRN
cramer.d D=NmaDetR
cramer.x ·˙=RmaVecMulNN
cramer.q ×˙=/rR
Assertion cramerlem3 NRCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y

Proof

Step Hyp Ref Expression
1 cramer.a A=NMatR
2 cramer.b B=BaseA
3 cramer.v V=BaseRN
4 cramer.d D=NmaDetR
5 cramer.x ·˙=RmaVecMulNN
6 cramer.q ×˙=/rR
7 1 2 3 5 4 slesolex NRCRingXBYVDXUnitRvVX·˙v=Y
8 1 2 3 4 5 6 cramerlem2 RCRingXBYVDXUnitRzVX·˙z=Yz=iNDXNmatRepVRYi×˙DX
9 8 3adant1l NRCRingXBYVDXUnitRzVX·˙z=Yz=iNDXNmatRepVRYi×˙DX
10 oveq2 z=vX·˙z=X·˙v
11 10 eqeq1d z=vX·˙z=YX·˙v=Y
12 oveq2 v=iNDXNmatRepVRYi×˙DXX·˙v=X·˙iNDXNmatRepVRYi×˙DX
13 12 eqeq1d v=iNDXNmatRepVRYi×˙DXX·˙v=YX·˙iNDXNmatRepVRYi×˙DX=Y
14 11 13 rexraleqim vVX·˙v=YzVX·˙z=Yz=iNDXNmatRepVRYi×˙DXX·˙iNDXNmatRepVRYi×˙DX=Y
15 oveq2 Z=iNDXNmatRepVRYi×˙DXX·˙Z=X·˙iNDXNmatRepVRYi×˙DX
16 15 adantl X·˙iNDXNmatRepVRYi×˙DX=YZ=iNDXNmatRepVRYi×˙DXX·˙Z=X·˙iNDXNmatRepVRYi×˙DX
17 simpl X·˙iNDXNmatRepVRYi×˙DX=YZ=iNDXNmatRepVRYi×˙DXX·˙iNDXNmatRepVRYi×˙DX=Y
18 16 17 eqtrd X·˙iNDXNmatRepVRYi×˙DX=YZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
19 18 ex X·˙iNDXNmatRepVRYi×˙DX=YZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
20 19 a1d X·˙iNDXNmatRepVRYi×˙DX=YNRCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
21 14 20 syl vVX·˙v=YzVX·˙z=Yz=iNDXNmatRepVRYi×˙DXNRCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
22 21 expcom zVX·˙z=Yz=iNDXNmatRepVRYi×˙DXvVX·˙v=YNRCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
23 22 com23 zVX·˙z=Yz=iNDXNmatRepVRYi×˙DXNRCRingXBYVDXUnitRvVX·˙v=YZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
24 9 23 mpcom NRCRingXBYVDXUnitRvVX·˙v=YZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
25 7 24 mpd NRCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y