Metamath Proof Explorer


Theorem crefdf

Description: A formulation of crefi easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypotheses crefi.x X = J
crefdf.b B = CovHasRef A
crefdf.p z A φ
Assertion crefdf J B C J X = C z 𝒫 J φ z Ref C

Proof

Step Hyp Ref Expression
1 crefi.x X = J
2 crefdf.b B = CovHasRef A
3 crefdf.p z A φ
4 2 eleq2i J B J CovHasRef A
5 1 crefi J CovHasRef A C J X = C z 𝒫 J A z Ref C
6 4 5 syl3an1b J B C J X = C z 𝒫 J A z Ref C
7 elin z 𝒫 J A z 𝒫 J z A
8 3 anim2i z 𝒫 J z A z 𝒫 J φ
9 7 8 sylbi z 𝒫 J A z 𝒫 J φ
10 9 anim1i z 𝒫 J A z Ref C z 𝒫 J φ z Ref C
11 anass z 𝒫 J φ z Ref C z 𝒫 J φ z Ref C
12 10 11 sylib z 𝒫 J A z Ref C z 𝒫 J φ z Ref C
13 12 reximi2 z 𝒫 J A z Ref C z 𝒫 J φ z Ref C
14 6 13 syl J B C J X = C z 𝒫 J φ z Ref C