Metamath Proof Explorer


Theorem crefdf

Description: A formulation of crefi easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypotheses crefi.x X=J
crefdf.b B=CovHasRefA
crefdf.p zAφ
Assertion crefdf JBCJX=Cz𝒫JφzRefC

Proof

Step Hyp Ref Expression
1 crefi.x X=J
2 crefdf.b B=CovHasRefA
3 crefdf.p zAφ
4 2 eleq2i JBJCovHasRefA
5 1 crefi JCovHasRefACJX=Cz𝒫JAzRefC
6 4 5 syl3an1b JBCJX=Cz𝒫JAzRefC
7 elin z𝒫JAz𝒫JzA
8 3 anim2i z𝒫JzAz𝒫Jφ
9 7 8 sylbi z𝒫JAz𝒫Jφ
10 9 anim1i z𝒫JAzRefCz𝒫JφzRefC
11 anass z𝒫JφzRefCz𝒫JφzRefC
12 10 11 sylib z𝒫JAzRefCz𝒫JφzRefC
13 12 reximi2 z𝒫JAzRefCz𝒫JφzRefC
14 6 13 syl JBCJX=Cz𝒫JφzRefC