Metamath Proof Explorer


Theorem crefi

Description: The property that every open cover has an A refinement for the topological space J . (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypothesis crefi.x X = J
Assertion crefi J CovHasRef A C J X = C z 𝒫 J A z Ref C

Proof

Step Hyp Ref Expression
1 crefi.x X = J
2 simp1 J CovHasRef A C J X = C J CovHasRef A
3 simp2 J CovHasRef A C J X = C C J
4 2 3 sselpwd J CovHasRef A C J X = C C 𝒫 J
5 1 iscref J CovHasRef A J Top y 𝒫 J X = y z 𝒫 J A z Ref y
6 5 simprbi J CovHasRef A y 𝒫 J X = y z 𝒫 J A z Ref y
7 6 3ad2ant1 J CovHasRef A C J X = C y 𝒫 J X = y z 𝒫 J A z Ref y
8 simp3 J CovHasRef A C J X = C X = C
9 unieq y = C y = C
10 9 eqeq2d y = C X = y X = C
11 breq2 y = C z Ref y z Ref C
12 11 rexbidv y = C z 𝒫 J A z Ref y z 𝒫 J A z Ref C
13 10 12 imbi12d y = C X = y z 𝒫 J A z Ref y X = C z 𝒫 J A z Ref C
14 13 rspcv C 𝒫 J y 𝒫 J X = y z 𝒫 J A z Ref y X = C z 𝒫 J A z Ref C
15 4 7 8 14 syl3c J CovHasRef A C J X = C z 𝒫 J A z Ref C