Metamath Proof Explorer


Theorem crefi

Description: The property that every open cover has an A refinement for the topological space J . (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypothesis crefi.x X=J
Assertion crefi JCovHasRefACJX=Cz𝒫JAzRefC

Proof

Step Hyp Ref Expression
1 crefi.x X=J
2 simp1 JCovHasRefACJX=CJCovHasRefA
3 simp2 JCovHasRefACJX=CCJ
4 2 3 sselpwd JCovHasRefACJX=CC𝒫J
5 1 iscref JCovHasRefAJTopy𝒫JX=yz𝒫JAzRefy
6 5 simprbi JCovHasRefAy𝒫JX=yz𝒫JAzRefy
7 6 3ad2ant1 JCovHasRefACJX=Cy𝒫JX=yz𝒫JAzRefy
8 simp3 JCovHasRefACJX=CX=C
9 unieq y=Cy=C
10 9 eqeq2d y=CX=yX=C
11 breq2 y=CzRefyzRefC
12 11 rexbidv y=Cz𝒫JAzRefyz𝒫JAzRefC
13 10 12 imbi12d y=CX=yz𝒫JAzRefyX=Cz𝒫JAzRefC
14 13 rspcv C𝒫Jy𝒫JX=yz𝒫JAzRefyX=Cz𝒫JAzRefC
15 4 7 8 14 syl3c JCovHasRefACJX=Cz𝒫JAzRefC