Metamath Proof Explorer


Theorem crefss

Description: The "every open cover has an A refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion crefss ABCovHasRefACovHasRefB

Proof

Step Hyp Ref Expression
1 sslin AB𝒫jA𝒫jB
2 ssrexv 𝒫jA𝒫jBz𝒫jAzRefyz𝒫jBzRefy
3 1 2 syl ABz𝒫jAzRefyz𝒫jBzRefy
4 3 imim2d ABj=yz𝒫jAzRefyj=yz𝒫jBzRefy
5 4 ralimdv ABy𝒫jj=yz𝒫jAzRefyy𝒫jj=yz𝒫jBzRefy
6 5 anim2d ABjTopy𝒫jj=yz𝒫jAzRefyjTopy𝒫jj=yz𝒫jBzRefy
7 eqid j=j
8 7 iscref jCovHasRefAjTopy𝒫jj=yz𝒫jAzRefy
9 7 iscref jCovHasRefBjTopy𝒫jj=yz𝒫jBzRefy
10 6 8 9 3imtr4g ABjCovHasRefAjCovHasRefB
11 10 ssrdv ABCovHasRefACovHasRefB