Metamath Proof Explorer


Theorem creur

Description: The real part of a complex number is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion creur A∃!xyA=x+iy

Proof

Step Hyp Ref Expression
1 cnre AzwA=z+iw
2 cru xyzwx+iy=z+iwx=zy=w
3 2 ancoms zwxyx+iy=z+iwx=zy=w
4 eqcom z+iw=x+iyx+iy=z+iw
5 ancom y=wx=zx=zy=w
6 3 4 5 3bitr4g zwxyz+iw=x+iyy=wx=z
7 6 anassrs zwxyz+iw=x+iyy=wx=z
8 7 rexbidva zwxyz+iw=x+iyyy=wx=z
9 biidd y=wx=zx=z
10 9 ceqsrexv wyy=wx=zx=z
11 10 ad2antlr zwxyy=wx=zx=z
12 8 11 bitrd zwxyz+iw=x+iyx=z
13 12 ralrimiva zwxyz+iw=x+iyx=z
14 reu6i zxyz+iw=x+iyx=z∃!xyz+iw=x+iy
15 13 14 syldan zw∃!xyz+iw=x+iy
16 eqeq1 A=z+iwA=x+iyz+iw=x+iy
17 16 rexbidv A=z+iwyA=x+iyyz+iw=x+iy
18 17 reubidv A=z+iw∃!xyA=x+iy∃!xyz+iw=x+iy
19 15 18 syl5ibrcom zwA=z+iw∃!xyA=x+iy
20 19 rexlimivv zwA=z+iw∃!xyA=x+iy
21 1 20 syl A∃!xyA=x+iy