Metamath Proof Explorer


Theorem creui

Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion creui A∃!yxA=x+iy

Proof

Step Hyp Ref Expression
1 cnre AzwA=z+iw
2 simpr zww
3 eqcom z+iw=x+iyx+iy=z+iw
4 cru xyzwx+iy=z+iwx=zy=w
5 4 ancoms zwxyx+iy=z+iwx=zy=w
6 3 5 bitrid zwxyz+iw=x+iyx=zy=w
7 6 anass1rs zwyxz+iw=x+iyx=zy=w
8 7 rexbidva zwyxz+iw=x+iyxx=zy=w
9 biidd x=zy=wy=w
10 9 ceqsrexv zxx=zy=wy=w
11 10 ad2antrr zwyxx=zy=wy=w
12 8 11 bitrd zwyxz+iw=x+iyy=w
13 12 ralrimiva zwyxz+iw=x+iyy=w
14 reu6i wyxz+iw=x+iyy=w∃!yxz+iw=x+iy
15 2 13 14 syl2anc zw∃!yxz+iw=x+iy
16 eqeq1 A=z+iwA=x+iyz+iw=x+iy
17 16 rexbidv A=z+iwxA=x+iyxz+iw=x+iy
18 17 reubidv A=z+iw∃!yxA=x+iy∃!yxz+iw=x+iy
19 15 18 syl5ibrcom zwA=z+iw∃!yxA=x+iy
20 19 rexlimivv zwA=z+iw∃!yxA=x+iy
21 1 20 syl A∃!yxA=x+iy