Metamath Proof Explorer


Theorem csbexg

Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005) (Revised by NM, 17-Aug-2018)

Ref Expression
Assertion csbexg xBWA/xBV

Proof

Step Hyp Ref Expression
1 df-csb A/xB=y|[˙A/x]˙yB
2 abid2 y|yB=B
3 elex BWBV
4 2 3 eqeltrid BWy|yBV
5 4 alimi xBWxy|yBV
6 spsbc AVxy|yBV[˙A/x]˙y|yBV
7 5 6 syl5 AVxBW[˙A/x]˙y|yBV
8 nfcv _xV
9 8 sbcabel AV[˙A/x]˙y|yBVy|[˙A/x]˙yBV
10 7 9 sylibd AVxBWy|[˙A/x]˙yBV
11 10 imp AVxBWy|[˙A/x]˙yBV
12 1 11 eqeltrid AVxBWA/xBV
13 csbprc ¬AVA/xB=
14 0ex V
15 13 14 eqeltrdi ¬AVA/xBV
16 15 adantr ¬AVxBWA/xBV
17 12 16 pm2.61ian xBWA/xBV