Metamath Proof Explorer


Theorem csbfv12gALTVD

Description: Virtual deduction proof of csbfv12 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12 is csbfv12gALTVD without virtual deductions and was automatically derived from csbfv12gALTVD .

1:: |- (. A e. C ->. A e. C ).
2:1: |- (. A e. C ->. [_ A / x ]_ { y } = { y } ).
3:1: |- (. A e. C ->. [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " [_ A / x ]_ { B } ) ).
4:1: |- (. A e. C ->. [_ A / x ]_ { B } = { [_ A / x ]_ B } ).
5:4: |- (. A e. C ->. ( [_ A / x ]_ F " [_ A / x ]_ { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ).
6:3,5: |- (. A e. C ->. [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ).
7:1: |- (. A e. C ->. ( [. A / x ]. ( F " { B } ) = { y } <-> [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } ) ).
8:6,2: |- (. A e. C ->. ( [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ).
9:7,8: |- (. A e. C ->. ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ).
10:9: |- (. A e. C ->. A. y ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ).
11:10: |- (. A e. C ->. { y | [. A / x ]. ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ).
12:1: |- (. A e. C ->. [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | [. A / x ]. ( F " { B } ) = { y } } ).
13:11,12: |- (. A e. C ->. [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ).
14:13: |- (. A e. C ->. U. [_ A / x ]_ { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ).
15:1: |- (. A e. C ->. [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. [_ A / x ]_ { y | ( F " { B } ) = { y } } ).
16:14,15: |- (. A e. C ->. [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ).
17:: |- ( FB ) = U. { y | ( F " { B } ) = { y } }
18:17: |- A. x ( FB ) = U. { y | ( F " { B } ) = { y } }
19:1,18: |- (. A e. C ->. [_ A / x ]_ ( FB ) = [_ A / x ]_ U. { y | ( F " { B } ) = { y } } ).
20:16,19: |- (. A e. C ->. [_ A / x ]_ ( FB ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ).
21:: |- ( [_ A / x ]_ F[_ A / x ]_ B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } }
22:20,21: |- (. A e. C ->. [_ A / x ]_ ( FB ) = ( [_ A / x ]_ F[_ A / x ]_ B ) ).
qed:22: |- ( A e. C -> [_ A / x ]_ ( FB ) = ( [_ A / x ]_ F[_ A / x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion csbfv12gALTVD ACA/xFB=A/xFA/xB

Proof

Step Hyp Ref Expression
1 idn1 ACAC
2 sbceqg AC[˙A/x]˙FB=yA/xFB=A/xy
3 1 2 e1a AC[˙A/x]˙FB=yA/xFB=A/xy
4 csbima12 A/xFB=A/xFA/xB
5 4 a1i ACA/xFB=A/xFA/xB
6 1 5 e1a ACA/xFB=A/xFA/xB
7 csbsng ACA/xB=A/xB
8 1 7 e1a ACA/xB=A/xB
9 imaeq2 A/xB=A/xBA/xFA/xB=A/xFA/xB
10 8 9 e1a ACA/xFA/xB=A/xFA/xB
11 eqeq1 A/xFB=A/xFA/xBA/xFB=A/xFA/xBA/xFA/xB=A/xFA/xB
12 11 biimprd A/xFB=A/xFA/xBA/xFA/xB=A/xFA/xBA/xFB=A/xFA/xB
13 6 10 12 e11 ACA/xFB=A/xFA/xB
14 csbconstg ACA/xy=y
15 1 14 e1a ACA/xy=y
16 eqeq12 A/xFB=A/xFA/xBA/xy=yA/xFB=A/xyA/xFA/xB=y
17 16 ex A/xFB=A/xFA/xBA/xy=yA/xFB=A/xyA/xFA/xB=y
18 13 15 17 e11 ACA/xFB=A/xyA/xFA/xB=y
19 bibi1 [˙A/x]˙FB=yA/xFB=A/xy[˙A/x]˙FB=yA/xFA/xB=yA/xFB=A/xyA/xFA/xB=y
20 19 biimprd [˙A/x]˙FB=yA/xFB=A/xyA/xFB=A/xyA/xFA/xB=y[˙A/x]˙FB=yA/xFA/xB=y
21 3 18 20 e11 AC[˙A/x]˙FB=yA/xFA/xB=y
22 21 gen11 ACy[˙A/x]˙FB=yA/xFA/xB=y
23 abbib y|[˙A/x]˙FB=y=y|A/xFA/xB=yy[˙A/x]˙FB=yA/xFA/xB=y
24 23 biimpri y[˙A/x]˙FB=yA/xFA/xB=yy|[˙A/x]˙FB=y=y|A/xFA/xB=y
25 22 24 e1a ACy|[˙A/x]˙FB=y=y|A/xFA/xB=y
26 csbab A/xy|FB=y=y|[˙A/x]˙FB=y
27 26 a1i ACA/xy|FB=y=y|[˙A/x]˙FB=y
28 1 27 e1a ACA/xy|FB=y=y|[˙A/x]˙FB=y
29 eqeq2 y|[˙A/x]˙FB=y=y|A/xFA/xB=yA/xy|FB=y=y|[˙A/x]˙FB=yA/xy|FB=y=y|A/xFA/xB=y
30 29 biimpd y|[˙A/x]˙FB=y=y|A/xFA/xB=yA/xy|FB=y=y|[˙A/x]˙FB=yA/xy|FB=y=y|A/xFA/xB=y
31 25 28 30 e11 ACA/xy|FB=y=y|A/xFA/xB=y
32 unieq A/xy|FB=y=y|A/xFA/xB=yA/xy|FB=y=y|A/xFA/xB=y
33 31 32 e1a ACA/xy|FB=y=y|A/xFA/xB=y
34 csbuni A/xy|FB=y=A/xy|FB=y
35 34 a1i ACA/xy|FB=y=A/xy|FB=y
36 1 35 e1a ACA/xy|FB=y=A/xy|FB=y
37 eqeq2 A/xy|FB=y=y|A/xFA/xB=yA/xy|FB=y=A/xy|FB=yA/xy|FB=y=y|A/xFA/xB=y
38 37 biimpd A/xy|FB=y=y|A/xFA/xB=yA/xy|FB=y=A/xy|FB=yA/xy|FB=y=y|A/xFA/xB=y
39 33 36 38 e11 ACA/xy|FB=y=y|A/xFA/xB=y
40 dffv4 FB=y|FB=y
41 40 ax-gen xFB=y|FB=y
42 csbeq2 xFB=y|FB=yA/xFB=A/xy|FB=y
43 42 a1i ACxFB=y|FB=yA/xFB=A/xy|FB=y
44 1 41 43 e10 ACA/xFB=A/xy|FB=y
45 eqeq2 A/xy|FB=y=y|A/xFA/xB=yA/xFB=A/xy|FB=yA/xFB=y|A/xFA/xB=y
46 45 biimpd A/xy|FB=y=y|A/xFA/xB=yA/xFB=A/xy|FB=yA/xFB=y|A/xFA/xB=y
47 39 44 46 e11 ACA/xFB=y|A/xFA/xB=y
48 dffv4 A/xFA/xB=y|A/xFA/xB=y
49 eqeq2 A/xFA/xB=y|A/xFA/xB=yA/xFB=A/xFA/xBA/xFB=y|A/xFA/xB=y
50 49 biimprcd A/xFB=y|A/xFA/xB=yA/xFA/xB=y|A/xFA/xB=yA/xFB=A/xFA/xB
51 47 48 50 e10 ACA/xFB=A/xFA/xB
52 51 in1 ACA/xFB=A/xFA/xB