Metamath Proof Explorer


Theorem csbie2df

Description: Conversion of implicit substitution to explicit class substitution. This version of csbiedf avoids a disjointness condition on x , A and x , D by substituting twice. Deduction form of csbie2 . (Contributed by AV, 29-Mar-2024)

Ref Expression
Hypotheses csbie2df.p xφ
csbie2df.c φ_xC
csbie2df.d φ_xD
csbie2df.a φAV
csbie2df.1 φx=yB=C
csbie2df.2 φy=AC=D
Assertion csbie2df φA/xB=D

Proof

Step Hyp Ref Expression
1 csbie2df.p xφ
2 csbie2df.c φ_xC
3 csbie2df.d φ_xD
4 csbie2df.a φAV
5 csbie2df.1 φx=yB=C
6 csbie2df.2 φy=AC=D
7 eqidd φD=D
8 dfsbcq y=A[˙y/x]˙B=D[˙A/x]˙B=D
9 sbceqg AV[˙A/x]˙B=DA/xB=A/xD
10 9 adantr AVφ[˙A/x]˙B=DA/xB=A/xD
11 csbtt AV_xDA/xD=D
12 3 11 sylan2 AVφA/xD=D
13 12 eqeq2d AVφA/xB=A/xDA/xB=D
14 10 13 bitrd AVφ[˙A/x]˙B=DA/xB=D
15 4 14 mpancom φ[˙A/x]˙B=DA/xB=D
16 8 15 sylan9bb y=Aφ[˙y/x]˙B=DA/xB=D
17 16 pm5.74da y=Aφ[˙y/x]˙B=DφA/xB=D
18 6 eqeq1d φy=AC=DD=D
19 18 expcom y=AφC=DD=D
20 19 pm5.74d y=AφC=DφD=D
21 sbsbc yxB=D[˙y/x]˙B=D
22 2 3 nfeqd φxC=D
23 5 eqeq1d φx=yB=DC=D
24 23 ex φx=yB=DC=D
25 1 22 24 sbiedw φyxB=DC=D
26 21 25 bitr3id φ[˙y/x]˙B=DC=D
27 26 pm5.74i φ[˙y/x]˙B=DφC=D
28 17 20 27 vtoclbg AVφA/xB=DφD=D
29 7 28 mpbiri AVφA/xB=D
30 4 29 mpcom φA/xB=D