Metamath Proof Explorer


Theorem csbima12gALTVD

Description: Virtual deduction proof of csbima12 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12 is csbima12gALTVD without virtual deductions and was automatically derived from csbima12gALTVD .

1:: |- (. A e. C ->. A e. C ).
2:1: ` |- (. A e. C ->. [_ A / x ]_ ( F |`B ) = ( ` [_ A / x ]_ F |`[_ A / x ]_ B ) ).
3:2: |- (. A e. C ->. ` ran [_ A / x ]_ ( F |`B ) ` = ran ( [_ A / x ]_ F |`[_ A / x ]_ B ) ).
4:1: |- (. A e. C ->. ` [_ A / x ]_ ran ( F |`B ) ` = ran [_ A / x ]_ ( F |`B ) ).
5:3,4: |- (. A e. C ->. ` [_ A / x ]_ ran ( F |`B ) ` = ran ( [_ A / x ]_ F |`[_ A / x ]_ B ) ).
6:: ` |- ( F " B ) = ran ( F |`B )
7:6: ` |- A. x ( F " B ) = ran ( F |`B )
8:1,7: |- (. A e. C ->. [_ A / x ]_ ( F " B ) = [_ ` A / x ]_ ran ( F |`B ) ).
9:5,8: |- (. A e. C ->. [_ A / x ]_ ( F " B ) = ` ran ( [_ A / x ]_ F |`[_ A / x ]_ B ) ).
10:: |- ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ` ( [_ A / x ]_ F |`[_ A / x ]_ B )
11:9,10: |- (. A e. C ->. [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ).
qed:11: |- ( A e. C -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion csbima12gALTVD ACA/xFB=A/xFA/xB

Proof

Step Hyp Ref Expression
1 idn1 ACAC
2 csbres A/xFB=A/xFA/xB
3 2 a1i ACA/xFB=A/xFA/xB
4 1 3 e1a ACA/xFB=A/xFA/xB
5 rneq A/xFB=A/xFA/xBranA/xFB=ranA/xFA/xB
6 4 5 e1a ACranA/xFB=ranA/xFA/xB
7 csbrn A/xranFB=ranA/xFB
8 7 a1i ACA/xranFB=ranA/xFB
9 1 8 e1a ACA/xranFB=ranA/xFB
10 eqeq2 ranA/xFB=ranA/xFA/xBA/xranFB=ranA/xFBA/xranFB=ranA/xFA/xB
11 10 biimpd ranA/xFB=ranA/xFA/xBA/xranFB=ranA/xFBA/xranFB=ranA/xFA/xB
12 6 9 11 e11 ACA/xranFB=ranA/xFA/xB
13 df-ima FB=ranFB
14 13 ax-gen xFB=ranFB
15 csbeq2 xFB=ranFBA/xFB=A/xranFB
16 15 a1i ACxFB=ranFBA/xFB=A/xranFB
17 1 14 16 e10 ACA/xFB=A/xranFB
18 eqeq2 A/xranFB=ranA/xFA/xBA/xFB=A/xranFBA/xFB=ranA/xFA/xB
19 18 biimpd A/xranFB=ranA/xFA/xBA/xFB=A/xranFBA/xFB=ranA/xFA/xB
20 12 17 19 e11 ACA/xFB=ranA/xFA/xB
21 df-ima A/xFA/xB=ranA/xFA/xB
22 eqeq2 A/xFA/xB=ranA/xFA/xBA/xFB=A/xFA/xBA/xFB=ranA/xFA/xB
23 22 biimprcd A/xFB=ranA/xFA/xBA/xFA/xB=ranA/xFA/xBA/xFB=A/xFA/xB
24 20 21 23 e10 ACA/xFB=A/xFA/xB
25 24 in1 ACA/xFB=A/xFA/xB