Description: Virtual deduction proof of csbima12 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12 is csbima12gALTVD without virtual deductions and was automatically derived from csbima12gALTVD .
1:: | |- (. A e. C ->. A e. C ). |
2:1: | ` |- (. A e. C ->. [_ A / x ]_ ( F |`B ) = ( ` [_ A / x ]_ F |`[_ A / x ]_ B ) ). |
3:2: | |- (. A e. C ->. ` ran [_ A / x ]_ ( F |`B ) ` = ran ( [_ A / x ]_ F |`[_ A / x ]_ B ) ). |
4:1: | |- (. A e. C ->. ` [_ A / x ]_ ran ( F |`B ) ` = ran [_ A / x ]_ ( F |`B ) ). |
5:3,4: | |- (. A e. C ->. ` [_ A / x ]_ ran ( F |`B ) ` = ran ( [_ A / x ]_ F |`[_ A / x ]_ B ) ). |
6:: | ` |- ( F " B ) = ran ( F |`B ) |
7:6: | ` |- A. x ( F " B ) = ran ( F |`B ) |
8:1,7: | |- (. A e. C ->. [_ A / x ]_ ( F " B ) = [_ ` A / x ]_ ran ( F |`B ) ). |
9:5,8: | |- (. A e. C ->. [_ A / x ]_ ( F " B ) = ` ran ( [_ A / x ]_ F |`[_ A / x ]_ B ) ). |
10:: | |- ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ` ( [_ A / x ]_ F |`[_ A / x ]_ B ) |
11:9,10: | |- (. A e. C ->. [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ). |
qed:11: | |- ( A e. C -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | csbima12gALTVD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 | |
|
2 | csbres | |
|
3 | 2 | a1i | |
4 | 1 3 | e1a | |
5 | rneq | |
|
6 | 4 5 | e1a | |
7 | csbrn | |
|
8 | 7 | a1i | |
9 | 1 8 | e1a | |
10 | eqeq2 | |
|
11 | 10 | biimpd | |
12 | 6 9 11 | e11 | |
13 | df-ima | |
|
14 | 13 | ax-gen | |
15 | csbeq2 | |
|
16 | 15 | a1i | |
17 | 1 14 16 | e10 | |
18 | eqeq2 | |
|
19 | 18 | biimpd | |
20 | 12 17 19 | e11 | |
21 | df-ima | |
|
22 | eqeq2 | |
|
23 | 22 | biimprcd | |
24 | 20 21 23 | e10 | |
25 | 24 | in1 | |