Metamath Proof Explorer


Theorem csbwrecsg

Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020) (Revised by Scott Fenton, 18-Nov-2024)

Ref Expression
Assertion csbwrecsg AVA/xwrecsRDF=wrecsA/xRA/xDA/xF

Proof

Step Hyp Ref Expression
1 csbfrecsg AVA/xfrecsRDF2nd=frecsA/xRA/xDA/xF2nd
2 eqid A/xR=A/xR
3 eqid A/xD=A/xD
4 csbcog AVA/xF2nd=A/xFA/x2nd
5 csbconstg AVA/x2nd=2nd
6 5 coeq2d AVA/xFA/x2nd=A/xF2nd
7 4 6 eqtrd AVA/xF2nd=A/xF2nd
8 frecseq123 A/xR=A/xRA/xD=A/xDA/xF2nd=A/xF2ndfrecsA/xRA/xDA/xF2nd=frecsA/xRA/xDA/xF2nd
9 2 3 7 8 mp3an12i AVfrecsA/xRA/xDA/xF2nd=frecsA/xRA/xDA/xF2nd
10 1 9 eqtrd AVA/xfrecsRDF2nd=frecsA/xRA/xDA/xF2nd
11 df-wrecs wrecsRDF=frecsRDF2nd
12 11 csbeq2i A/xwrecsRDF=A/xfrecsRDF2nd
13 df-wrecs wrecsA/xRA/xDA/xF=frecsA/xRA/xDA/xF2nd
14 10 12 13 3eqtr4g AVA/xwrecsRDF=wrecsA/xRA/xDA/xF