Metamath Proof Explorer


Theorem cscval

Description: Value of the cosecant function. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion cscval A sin A 0 csc A = 1 sin A

Proof

Step Hyp Ref Expression
1 fveq2 y = A sin y = sin A
2 1 neeq1d y = A sin y 0 sin A 0
3 2 elrab A y | sin y 0 A sin A 0
4 fveq2 x = A sin x = sin A
5 4 oveq2d x = A 1 sin x = 1 sin A
6 df-csc csc = x y | sin y 0 1 sin x
7 ovex 1 sin A V
8 5 6 7 fvmpt A y | sin y 0 csc A = 1 sin A
9 3 8 sylbir A sin A 0 csc A = 1 sin A