Metamath Proof Explorer


Theorem cshinj

Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021)

Ref Expression
Assertion cshinj FWordAFunF-1SG=FcyclShiftSFunG-1

Proof

Step Hyp Ref Expression
1 wrdf FWordAF:0..^FA
2 df-f1 F:0..^F1-1AF:0..^FAFunF-1
3 2 biimpri F:0..^FAFunF-1F:0..^F1-1A
4 1 3 sylan FWordAFunF-1F:0..^F1-1A
5 4 3adant3 FWordAFunF-1SF:0..^F1-1A
6 5 adantr FWordAFunF-1SG=FcyclShiftSF:0..^F1-1A
7 simpl3 FWordAFunF-1SG=FcyclShiftSS
8 simpr FWordAFunF-1SG=FcyclShiftSG=FcyclShiftS
9 cshf1 F:0..^F1-1ASG=FcyclShiftSG:0..^F1-1A
10 6 7 8 9 syl3anc FWordAFunF-1SG=FcyclShiftSG:0..^F1-1A
11 10 ex FWordAFunF-1SG=FcyclShiftSG:0..^F1-1A
12 df-f1 G:0..^F1-1AG:0..^FAFunG-1
13 12 simprbi G:0..^F1-1AFunG-1
14 11 13 syl6 FWordAFunF-1SG=FcyclShiftSFunG-1