Metamath Proof Explorer


Theorem cshinj

Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021)

Ref Expression
Assertion cshinj F Word A Fun F -1 S G = F cyclShift S Fun G -1

Proof

Step Hyp Ref Expression
1 wrdf F Word A F : 0 ..^ F A
2 df-f1 F : 0 ..^ F 1-1 A F : 0 ..^ F A Fun F -1
3 2 biimpri F : 0 ..^ F A Fun F -1 F : 0 ..^ F 1-1 A
4 1 3 sylan F Word A Fun F -1 F : 0 ..^ F 1-1 A
5 4 3adant3 F Word A Fun F -1 S F : 0 ..^ F 1-1 A
6 5 adantr F Word A Fun F -1 S G = F cyclShift S F : 0 ..^ F 1-1 A
7 simpl3 F Word A Fun F -1 S G = F cyclShift S S
8 simpr F Word A Fun F -1 S G = F cyclShift S G = F cyclShift S
9 cshf1 F : 0 ..^ F 1-1 A S G = F cyclShift S G : 0 ..^ F 1-1 A
10 6 7 8 9 syl3anc F Word A Fun F -1 S G = F cyclShift S G : 0 ..^ F 1-1 A
11 10 ex F Word A Fun F -1 S G = F cyclShift S G : 0 ..^ F 1-1 A
12 df-f1 G : 0 ..^ F 1-1 A G : 0 ..^ F A Fun G -1
13 12 simprbi G : 0 ..^ F 1-1 A Fun G -1
14 11 13 syl6 F Word A Fun F -1 S G = F cyclShift S Fun G -1