Metamath Proof Explorer


Theorem cshwf

Description: A cyclically shifted word is a function from a half-open range of integers of the same length as the word as domain to the set of symbols for the word. (Contributed by AV, 12-Nov-2018)

Ref Expression
Assertion cshwf WWordANWcyclShiftN:0..^WA

Proof

Step Hyp Ref Expression
1 cshwcl WWordAWcyclShiftNWordA
2 wrdf WcyclShiftNWordAWcyclShiftN:0..^WcyclShiftNA
3 1 2 syl WWordAWcyclShiftN:0..^WcyclShiftNA
4 3 adantr WWordANWcyclShiftN:0..^WcyclShiftNA
5 cshwlen WWordANWcyclShiftN=W
6 5 oveq2d WWordAN0..^WcyclShiftN=0..^W
7 6 feq2d WWordANWcyclShiftN:0..^WcyclShiftNAWcyclShiftN:0..^WA
8 4 7 mpbid WWordANWcyclShiftN:0..^WA