Metamath Proof Explorer


Theorem cssincl

Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis css0.c C=ClSubSpW
Assertion cssincl WPreHilACBCABC

Proof

Step Hyp Ref Expression
1 css0.c C=ClSubSpW
2 eqid BaseW=BaseW
3 eqid ocvW=ocvW
4 2 3 ocvss ocvWABaseW
5 2 3 ocvss ocvWBBaseW
6 4 5 unssi ocvWAocvWBBaseW
7 2 1 3 ocvcss WPreHilocvWAocvWBBaseWocvWocvWAocvWBC
8 6 7 mpan2 WPreHilocvWocvWAocvWBC
9 3 1 cssi ACA=ocvWocvWA
10 3 1 cssi BCB=ocvWocvWB
11 9 10 ineqan12d ACBCAB=ocvWocvWAocvWocvWB
12 3 unocv ocvWocvWAocvWB=ocvWocvWAocvWocvWB
13 11 12 eqtr4di ACBCAB=ocvWocvWAocvWB
14 13 eleq1d ACBCABCocvWocvWAocvWBC
15 8 14 syl5ibrcom WPreHilACBCABC
16 15 3impib WPreHilACBCABC