Metamath Proof Explorer


Theorem cssval

Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o ˙=ocvW
cssval.c C=ClSubSpW
Assertion cssval WXC=s|s=˙˙s

Proof

Step Hyp Ref Expression
1 cssval.o ˙=ocvW
2 cssval.c C=ClSubSpW
3 elex WXWV
4 fveq2 w=Wocvw=ocvW
5 4 1 eqtr4di w=Wocvw=˙
6 5 fveq1d w=Wocvws=˙s
7 5 6 fveq12d w=Wocvwocvws=˙˙s
8 7 eqeq2d w=Ws=ocvwocvwss=˙˙s
9 8 abbidv w=Ws|s=ocvwocvws=s|s=˙˙s
10 df-css ClSubSp=wVs|s=ocvwocvws
11 fvex BaseWV
12 11 pwex 𝒫BaseWV
13 id s=˙˙ss=˙˙s
14 eqid BaseW=BaseW
15 14 1 ocvss ˙˙sBaseW
16 fvex ˙˙sV
17 16 elpw ˙˙s𝒫BaseW˙˙sBaseW
18 15 17 mpbir ˙˙s𝒫BaseW
19 13 18 eqeltrdi s=˙˙ss𝒫BaseW
20 19 abssi s|s=˙˙s𝒫BaseW
21 12 20 ssexi s|s=˙˙sV
22 9 10 21 fvmpt WVClSubSpW=s|s=˙˙s
23 2 22 eqtrid WVC=s|s=˙˙s
24 3 23 syl WXC=s|s=˙˙s