Metamath Proof Explorer


Theorem ctbnfien

Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion ctbnfien XωYωAX¬AFinAY

Proof

Step Hyp Ref Expression
1 isfinite AFinAω
2 1 notbii ¬AFin¬Aω
3 relen Rel
4 3 brrelex1i XωXV
5 ssdomg XVAXAX
6 4 5 syl XωAXAX
7 domen2 XωAXAω
8 6 7 sylibd XωAXAω
9 8 imp XωAXAω
10 brdom2 AωAωAω
11 9 10 sylib XωAXAωAω
12 11 adantlr XωYωAXAωAω
13 12 ord XωYωAX¬AωAω
14 2 13 biimtrid XωYωAX¬AFinAω
15 14 impr XωYωAX¬AFinAω
16 enen2 YωAYAω
17 16 ad2antlr XωYωAX¬AFinAYAω
18 15 17 mpbird XωYωAX¬AFinAY