Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fiphp3d.a | |
|
fiphp3d.b | |
||
fiphp3d.c | |
||
Assertion | fiphp3d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiphp3d.a | |
|
2 | fiphp3d.b | |
|
3 | fiphp3d.c | |
|
4 | ominf | |
|
5 | iunrab | |
|
6 | risset | |
|
7 | eqcom | |
|
8 | 7 | rexbii | |
9 | 6 8 | bitri | |
10 | 3 9 | sylib | |
11 | 10 | ralrimiva | |
12 | rabid2 | |
|
13 | 11 12 | sylibr | |
14 | 5 13 | eqtr4id | |
15 | 14 | eleq1d | |
16 | nnenom | |
|
17 | entr | |
|
18 | 1 16 17 | sylancl | |
19 | enfi | |
|
20 | 18 19 | syl | |
21 | 15 20 | bitrd | |
22 | 4 21 | mtbiri | |
23 | iunfi | |
|
24 | 2 23 | sylan | |
25 | 22 24 | mtand | |
26 | rexnal | |
|
27 | 25 26 | sylibr | |
28 | 18 16 | jctir | |
29 | ssrab2 | |
|
30 | 29 | jctl | |
31 | ctbnfien | |
|
32 | 28 30 31 | syl2an | |
33 | 32 | ex | |
34 | 33 | reximdv | |
35 | 27 34 | mpd | |