| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fiphp3d.a | ⊢ ( 𝜑  →  𝐴  ≈  ℕ ) | 
						
							| 2 |  | fiphp3d.b | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | fiphp3d.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐷  ∈  𝐵 ) | 
						
							| 4 |  | ominf | ⊢ ¬  ω  ∈  Fin | 
						
							| 5 |  | iunrab | ⊢ ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  =  { 𝑥  ∈  𝐴  ∣  ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 } | 
						
							| 6 |  | risset | ⊢ ( 𝐷  ∈  𝐵  ↔  ∃ 𝑦  ∈  𝐵 𝑦  =  𝐷 ) | 
						
							| 7 |  | eqcom | ⊢ ( 𝑦  =  𝐷  ↔  𝐷  =  𝑦 ) | 
						
							| 8 | 7 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 𝑦  =  𝐷  ↔  ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 ) | 
						
							| 9 | 6 8 | bitri | ⊢ ( 𝐷  ∈  𝐵  ↔  ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 ) | 
						
							| 10 | 3 9 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 ) | 
						
							| 11 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 ) | 
						
							| 12 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑥  ∈  𝐴  ∣  ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 }  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( 𝜑  →  𝐴  =  { 𝑥  ∈  𝐴  ∣  ∃ 𝑦  ∈  𝐵 𝐷  =  𝑦 } ) | 
						
							| 14 | 5 13 | eqtr4id | ⊢ ( 𝜑  →  ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  =  𝐴 ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝜑  →  ( ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin  ↔  𝐴  ∈  Fin ) ) | 
						
							| 16 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 17 |  | entr | ⊢ ( ( 𝐴  ≈  ℕ  ∧  ℕ  ≈  ω )  →  𝐴  ≈  ω ) | 
						
							| 18 | 1 16 17 | sylancl | ⊢ ( 𝜑  →  𝐴  ≈  ω ) | 
						
							| 19 |  | enfi | ⊢ ( 𝐴  ≈  ω  →  ( 𝐴  ∈  Fin  ↔  ω  ∈  Fin ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  Fin  ↔  ω  ∈  Fin ) ) | 
						
							| 21 | 15 20 | bitrd | ⊢ ( 𝜑  →  ( ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin  ↔  ω  ∈  Fin ) ) | 
						
							| 22 | 4 21 | mtbiri | ⊢ ( 𝜑  →  ¬  ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) | 
						
							| 23 |  | iunfi | ⊢ ( ( 𝐵  ∈  Fin  ∧  ∀ 𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin )  →  ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) | 
						
							| 24 | 2 23 | sylan | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin )  →  ∪  𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) | 
						
							| 25 | 22 24 | mtand | ⊢ ( 𝜑  →  ¬  ∀ 𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) | 
						
							| 26 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝐵 ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin  ↔  ¬  ∀ 𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) | 
						
							| 27 | 25 26 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐵 ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) | 
						
							| 28 | 18 16 | jctir | ⊢ ( 𝜑  →  ( 𝐴  ≈  ω  ∧  ℕ  ≈  ω ) ) | 
						
							| 29 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ⊆  𝐴 | 
						
							| 30 | 29 | jctl | ⊢ ( ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin  →  ( { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ⊆  𝐴  ∧  ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) ) | 
						
							| 31 |  | ctbnfien | ⊢ ( ( ( 𝐴  ≈  ω  ∧  ℕ  ≈  ω )  ∧  ( { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ⊆  𝐴  ∧  ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin ) )  →  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ≈  ℕ ) | 
						
							| 32 | 28 30 31 | syl2an | ⊢ ( ( 𝜑  ∧  ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin )  →  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ≈  ℕ ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝜑  →  ( ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin  →  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ≈  ℕ ) ) | 
						
							| 34 | 33 | reximdv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝐵 ¬  { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ∈  Fin  →  ∃ 𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ≈  ℕ ) ) | 
						
							| 35 | 27 34 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝐷  =  𝑦 }  ≈  ℕ ) |