Metamath Proof Explorer


Theorem curf12

Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses curfval.g G=CDcurryFF
curfval.a A=BaseC
curfval.c φCCat
curfval.d φDCat
curfval.f φFC×cDFuncE
curfval.b B=BaseD
curf1.x φXA
curf1.k K=1stGX
curf11.y φYB
curf12.j J=HomD
curf12.1 1˙=IdC
curf12.y φZB
curf12.g φHYJZ
Assertion curf12 φY2ndKZH=1˙XXY2ndFXZH

Proof

Step Hyp Ref Expression
1 curfval.g G=CDcurryFF
2 curfval.a A=BaseC
3 curfval.c φCCat
4 curfval.d φDCat
5 curfval.f φFC×cDFuncE
6 curfval.b B=BaseD
7 curf1.x φXA
8 curf1.k K=1stGX
9 curf11.y φYB
10 curf12.j J=HomD
11 curf12.1 1˙=IdC
12 curf12.y φZB
13 curf12.g φHYJZ
14 1 2 3 4 5 6 7 8 10 11 curf1 φK=yBX1stFyyB,zBgyJz1˙XXy2ndFXzg
15 6 fvexi BV
16 15 mptex yBX1stFyV
17 15 15 mpoex yB,zBgyJz1˙XXy2ndFXzgV
18 16 17 op2ndd K=yBX1stFyyB,zBgyJz1˙XXy2ndFXzg2ndK=yB,zBgyJz1˙XXy2ndFXzg
19 14 18 syl φ2ndK=yB,zBgyJz1˙XXy2ndFXzg
20 12 adantr φy=YZB
21 ovex yJzV
22 21 mptex gyJz1˙XXy2ndFXzgV
23 22 a1i φy=Yz=ZgyJz1˙XXy2ndFXzgV
24 13 adantr φy=Yz=ZHYJZ
25 simprl φy=Yz=Zy=Y
26 simprr φy=Yz=Zz=Z
27 25 26 oveq12d φy=Yz=ZyJz=YJZ
28 24 27 eleqtrrd φy=Yz=ZHyJz
29 ovexd φy=Yz=Zg=H1˙XXy2ndFXzgV
30 simplrl φy=Yz=Zg=Hy=Y
31 30 opeq2d φy=Yz=Zg=HXy=XY
32 simplrr φy=Yz=Zg=Hz=Z
33 32 opeq2d φy=Yz=Zg=HXz=XZ
34 31 33 oveq12d φy=Yz=Zg=HXy2ndFXz=XY2ndFXZ
35 eqidd φy=Yz=Zg=H1˙X=1˙X
36 simpr φy=Yz=Zg=Hg=H
37 34 35 36 oveq123d φy=Yz=Zg=H1˙XXy2ndFXzg=1˙XXY2ndFXZH
38 28 29 37 fvmptdv2 φy=Yz=ZY2ndKZ=gyJz1˙XXy2ndFXzgY2ndKZH=1˙XXY2ndFXZH
39 9 20 23 38 ovmpodv φ2ndK=yB,zBgyJz1˙XXy2ndFXzgY2ndKZH=1˙XXY2ndFXZH
40 19 39 mpd φY2ndKZH=1˙XXY2ndFXZH