Metamath Proof Explorer


Theorem curry1val

Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis curry1.1 G=F2ndC×V-1
Assertion curry1val FFnA×BCAGD=CFD

Proof

Step Hyp Ref Expression
1 curry1.1 G=F2ndC×V-1
2 1 curry1 FFnA×BCAG=xBCFx
3 2 fveq1d FFnA×BCAGD=xBCFxD
4 eqid xBCFx=xBCFx
5 4 fvmptndm ¬DBxBCFxD=
6 5 adantl FFnA×BCA¬DBxBCFxD=
7 fndm FFnA×BdomF=A×B
8 7 adantr FFnA×BCAdomF=A×B
9 simpr CADBDB
10 9 con3i ¬DB¬CADB
11 ndmovg domF=A×B¬CADBCFD=
12 8 10 11 syl2an FFnA×BCA¬DBCFD=
13 6 12 eqtr4d FFnA×BCA¬DBxBCFxD=CFD
14 13 ex FFnA×BCA¬DBxBCFxD=CFD
15 oveq2 x=DCFx=CFD
16 ovex CFDV
17 15 4 16 fvmpt DBxBCFxD=CFD
18 14 17 pm2.61d2 FFnA×BCAxBCFxD=CFD
19 3 18 eqtrd FFnA×BCAGD=CFD