Step |
Hyp |
Ref |
Expression |
1 |
|
cusgracyclt3v.1 |
|
2 |
|
isacycgr |
|
3 |
|
3nn0 |
|
4 |
1
|
fvexi |
|
5 |
|
hashxnn0 |
|
6 |
4 5
|
ax-mp |
|
7 |
|
xnn0lem1lt |
|
8 |
3 6 7
|
mp2an |
|
9 |
|
3re |
|
10 |
9
|
rexri |
|
11 |
|
xnn0xr |
|
12 |
6 11
|
ax-mp |
|
13 |
|
xrlenlt |
|
14 |
10 12 13
|
mp2an |
|
15 |
|
3m1e2 |
|
16 |
15
|
breq1i |
|
17 |
8 14 16
|
3bitr3i |
|
18 |
1
|
cusgr3cyclex |
|
19 |
|
3ne0 |
|
20 |
|
neeq1 |
|
21 |
19 20
|
mpbiri |
|
22 |
|
hasheq0 |
|
23 |
22
|
elv |
|
24 |
23
|
necon3bii |
|
25 |
21 24
|
sylib |
|
26 |
25
|
anim2i |
|
27 |
26
|
2eximi |
|
28 |
18 27
|
syl |
|
29 |
28
|
ex |
|
30 |
17 29
|
syl5bi |
|
31 |
30
|
con1d |
|
32 |
2 31
|
sylbid |
|
33 |
|
cusgrusgr |
|
34 |
1
|
usgrcyclgt2v |
|
35 |
34
|
3expib |
|
36 |
33 35
|
syl |
|
37 |
36 17
|
syl6ibr |
|
38 |
37
|
exlimdvv |
|
39 |
38
|
con2d |
|
40 |
39 2
|
sylibrd |
|
41 |
32 40
|
impbid |
|