| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cusgracyclt3v.1 |
|- V = ( Vtx ` G ) |
| 2 |
|
isacycgr |
|- ( G e. ComplUSGraph -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 3 |
|
3nn0 |
|- 3 e. NN0 |
| 4 |
1
|
fvexi |
|- V e. _V |
| 5 |
|
hashxnn0 |
|- ( V e. _V -> ( # ` V ) e. NN0* ) |
| 6 |
4 5
|
ax-mp |
|- ( # ` V ) e. NN0* |
| 7 |
|
xnn0lem1lt |
|- ( ( 3 e. NN0 /\ ( # ` V ) e. NN0* ) -> ( 3 <_ ( # ` V ) <-> ( 3 - 1 ) < ( # ` V ) ) ) |
| 8 |
3 6 7
|
mp2an |
|- ( 3 <_ ( # ` V ) <-> ( 3 - 1 ) < ( # ` V ) ) |
| 9 |
|
3re |
|- 3 e. RR |
| 10 |
9
|
rexri |
|- 3 e. RR* |
| 11 |
|
xnn0xr |
|- ( ( # ` V ) e. NN0* -> ( # ` V ) e. RR* ) |
| 12 |
6 11
|
ax-mp |
|- ( # ` V ) e. RR* |
| 13 |
|
xrlenlt |
|- ( ( 3 e. RR* /\ ( # ` V ) e. RR* ) -> ( 3 <_ ( # ` V ) <-> -. ( # ` V ) < 3 ) ) |
| 14 |
10 12 13
|
mp2an |
|- ( 3 <_ ( # ` V ) <-> -. ( # ` V ) < 3 ) |
| 15 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 16 |
15
|
breq1i |
|- ( ( 3 - 1 ) < ( # ` V ) <-> 2 < ( # ` V ) ) |
| 17 |
8 14 16
|
3bitr3i |
|- ( -. ( # ` V ) < 3 <-> 2 < ( # ` V ) ) |
| 18 |
1
|
cusgr3cyclex |
|- ( ( G e. ComplUSGraph /\ 2 < ( # ` V ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 ) ) |
| 19 |
|
3ne0 |
|- 3 =/= 0 |
| 20 |
|
neeq1 |
|- ( ( # ` f ) = 3 -> ( ( # ` f ) =/= 0 <-> 3 =/= 0 ) ) |
| 21 |
19 20
|
mpbiri |
|- ( ( # ` f ) = 3 -> ( # ` f ) =/= 0 ) |
| 22 |
|
hasheq0 |
|- ( f e. _V -> ( ( # ` f ) = 0 <-> f = (/) ) ) |
| 23 |
22
|
elv |
|- ( ( # ` f ) = 0 <-> f = (/) ) |
| 24 |
23
|
necon3bii |
|- ( ( # ` f ) =/= 0 <-> f =/= (/) ) |
| 25 |
21 24
|
sylib |
|- ( ( # ` f ) = 3 -> f =/= (/) ) |
| 26 |
25
|
anim2i |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 ) -> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 27 |
26
|
2eximi |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 28 |
18 27
|
syl |
|- ( ( G e. ComplUSGraph /\ 2 < ( # ` V ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 29 |
28
|
ex |
|- ( G e. ComplUSGraph -> ( 2 < ( # ` V ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 30 |
17 29
|
biimtrid |
|- ( G e. ComplUSGraph -> ( -. ( # ` V ) < 3 -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 31 |
30
|
con1d |
|- ( G e. ComplUSGraph -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> ( # ` V ) < 3 ) ) |
| 32 |
2 31
|
sylbid |
|- ( G e. ComplUSGraph -> ( G e. AcyclicGraph -> ( # ` V ) < 3 ) ) |
| 33 |
|
cusgrusgr |
|- ( G e. ComplUSGraph -> G e. USGraph ) |
| 34 |
1
|
usgrcyclgt2v |
|- ( ( G e. USGraph /\ f ( Cycles ` G ) p /\ f =/= (/) ) -> 2 < ( # ` V ) ) |
| 35 |
34
|
3expib |
|- ( G e. USGraph -> ( ( f ( Cycles ` G ) p /\ f =/= (/) ) -> 2 < ( # ` V ) ) ) |
| 36 |
33 35
|
syl |
|- ( G e. ComplUSGraph -> ( ( f ( Cycles ` G ) p /\ f =/= (/) ) -> 2 < ( # ` V ) ) ) |
| 37 |
36 17
|
imbitrrdi |
|- ( G e. ComplUSGraph -> ( ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. ( # ` V ) < 3 ) ) |
| 38 |
37
|
exlimdvv |
|- ( G e. ComplUSGraph -> ( E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. ( # ` V ) < 3 ) ) |
| 39 |
38
|
con2d |
|- ( G e. ComplUSGraph -> ( ( # ` V ) < 3 -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 40 |
39 2
|
sylibrd |
|- ( G e. ComplUSGraph -> ( ( # ` V ) < 3 -> G e. AcyclicGraph ) ) |
| 41 |
32 40
|
impbid |
|- ( G e. ComplUSGraph -> ( G e. AcyclicGraph <-> ( # ` V ) < 3 ) ) |