Metamath Proof Explorer


Theorem cusgr3cyclex

Description: Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023)

Ref Expression
Hypothesis cusgr3cyclex.1 V=VtxG
Assertion cusgr3cyclex GComplUSGraph2<VfpfCyclesGpf=3

Proof

Step Hyp Ref Expression
1 cusgr3cyclex.1 V=VtxG
2 3anass aVbVcVaVbVcV
3 2 bianass GComplUSGraphaVbVcVGComplUSGraphaVbVcV
4 cusgrusgr GComplUSGraphGUSGraph
5 usgrumgr GUSGraphGUMGraph
6 4 5 syl GComplUSGraphGUMGraph
7 3simpc aVbVcVbVcV
8 7 ancli aVbVcVaVbVcVbVcV
9 df-3an abacbcabacbc
10 9 biimpi abacbcabacbc
11 an32 aVbVcVbVcVabacaVbVcVabacbVcV
12 11 anbi1i aVbVcVbVcVabacbcaVbVcVabacbVcVbc
13 anass aVbVcVabacbVcVbcaVbVcVabacbVcVbc
14 12 13 sylbb aVbVcVbVcVabacbcaVbVcVabacbVcVbc
15 14 anasss aVbVcVbVcVabacbcaVbVcVabacbVcVbc
16 8 10 15 syl2an aVbVcVabacbcaVbVcVabacbVcVbc
17 anandi3 aVbVcVaVbVaVcV
18 17 anbi1i aVbVcVabacaVbVaVcVabac
19 an4 aVbVaVcVabacaVbVabaVcVac
20 18 19 sylbb aVbVcVabacaVbVabaVcVac
21 df-3an aVbVabaVbVab
22 eqid EdgG=EdgG
23 1 22 cusgredgex2 GComplUSGraphaVbVababEdgG
24 21 23 biimtrrid GComplUSGraphaVbVababEdgG
25 df-3an aVcVacaVcVac
26 1 22 cusgredgex2 GComplUSGraphaVcVacacEdgG
27 25 26 biimtrrid GComplUSGraphaVcVacacEdgG
28 24 27 anim12d GComplUSGraphaVbVabaVcVacabEdgGacEdgG
29 20 28 syl5 GComplUSGraphaVbVcVabacabEdgGacEdgG
30 df-3an bVcVbcbVcVbc
31 1 22 cusgredgex2 GComplUSGraphbVcVbcbcEdgG
32 30 31 biimtrrid GComplUSGraphbVcVbcbcEdgG
33 29 32 anim12d GComplUSGraphaVbVcVabacbVcVbcabEdgGacEdgGbcEdgG
34 16 33 syl5 GComplUSGraphaVbVcVabacbcabEdgGacEdgGbcEdgG
35 3anan32 abEdgGbcEdgGacEdgGabEdgGacEdgGbcEdgG
36 prcom ac=ca
37 36 eleq1i acEdgGcaEdgG
38 37 3anbi3i abEdgGbcEdgGacEdgGabEdgGbcEdgGcaEdgG
39 35 38 bitr3i abEdgGacEdgGbcEdgGabEdgGbcEdgGcaEdgG
40 34 39 imbitrdi GComplUSGraphaVbVcVabacbcabEdgGbcEdgGcaEdgG
41 pm5.3 aVbVcVabacbcabEdgGbcEdgGcaEdgGaVbVcVabacbcaVbVcVabEdgGbcEdgGcaEdgG
42 40 41 sylib GComplUSGraphaVbVcVabacbcaVbVcVabEdgGbcEdgGcaEdgG
43 1 22 umgr3cyclex GUMGraphaVbVcVabEdgGbcEdgGcaEdgGfpfCyclesGpf=3p0=a
44 3simpa fCyclesGpf=3p0=afCyclesGpf=3
45 44 2eximi fpfCyclesGpf=3p0=afpfCyclesGpf=3
46 43 45 syl GUMGraphaVbVcVabEdgGbcEdgGcaEdgGfpfCyclesGpf=3
47 46 3expib GUMGraphaVbVcVabEdgGbcEdgGcaEdgGfpfCyclesGpf=3
48 6 42 47 sylsyld GComplUSGraphaVbVcVabacbcfpfCyclesGpf=3
49 48 expdimp GComplUSGraphaVbVcVabacbcfpfCyclesGpf=3
50 3 49 sylbir GComplUSGraphaVbVcVabacbcfpfCyclesGpf=3
51 50 reximdvva GComplUSGraphaVbVcVabacbcbVcVfpfCyclesGpf=3
52 51 reximdva GComplUSGraphaVbVcVabacbcaVbVcVfpfCyclesGpf=3
53 id fpfCyclesGpf=3fpfCyclesGpf=3
54 53 rexlimivw cVfpfCyclesGpf=3fpfCyclesGpf=3
55 54 rexlimivw bVcVfpfCyclesGpf=3fpfCyclesGpf=3
56 55 rexlimivw aVbVcVfpfCyclesGpf=3fpfCyclesGpf=3
57 52 56 syl6 GComplUSGraphaVbVcVabacbcfpfCyclesGpf=3
58 1 fvexi VV
59 hashgt23el VV2<VaVbVcVabacbc
60 58 59 mpan 2<VaVbVcVabacbc
61 57 60 impel GComplUSGraph2<VfpfCyclesGpf=3