Metamath Proof Explorer


Theorem cvlatexchb2

Description: A version of cvlexchb2 for atoms. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙=K
cvlatexch.j ˙=joinK
cvlatexch.a A=AtomsK
Assertion cvlatexchb2 KCvLatPAQARAPRP˙Q˙RP˙R=Q˙R

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙=K
2 cvlatexch.j ˙=joinK
3 cvlatexch.a A=AtomsK
4 1 2 3 cvlatexchb1 KCvLatPAQARAPRP˙R˙QR˙P=R˙Q
5 cvllat KCvLatKLat
6 5 3ad2ant1 KCvLatPAQARAPRKLat
7 simp22 KCvLatPAQARAPRQA
8 eqid BaseK=BaseK
9 8 3 atbase QAQBaseK
10 7 9 syl KCvLatPAQARAPRQBaseK
11 simp23 KCvLatPAQARAPRRA
12 8 3 atbase RARBaseK
13 11 12 syl KCvLatPAQARAPRRBaseK
14 8 2 latjcom KLatQBaseKRBaseKQ˙R=R˙Q
15 6 10 13 14 syl3anc KCvLatPAQARAPRQ˙R=R˙Q
16 15 breq2d KCvLatPAQARAPRP˙Q˙RP˙R˙Q
17 simp21 KCvLatPAQARAPRPA
18 8 3 atbase PAPBaseK
19 17 18 syl KCvLatPAQARAPRPBaseK
20 8 2 latjcom KLatPBaseKRBaseKP˙R=R˙P
21 6 19 13 20 syl3anc KCvLatPAQARAPRP˙R=R˙P
22 21 15 eqeq12d KCvLatPAQARAPRP˙R=Q˙RR˙P=R˙Q
23 4 16 22 3bitr4d KCvLatPAQARAPRP˙Q˙RP˙R=Q˙R