Metamath Proof Explorer


Theorem cvmlift2lem4

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b B = C
cvmlift2.f φ F C CovMap J
cvmlift2.g φ G II × t II Cn J
cvmlift2.p φ P B
cvmlift2.i φ F P = 0 G 0
cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
Assertion cvmlift2lem4 X 0 1 Y 0 1 X K Y = ι f II Cn C | F f = z 0 1 X G z f 0 = H X Y

Proof

Step Hyp Ref Expression
1 cvmlift2.b B = C
2 cvmlift2.f φ F C CovMap J
3 cvmlift2.g φ G II × t II Cn J
4 cvmlift2.p φ P B
5 cvmlift2.i φ F P = 0 G 0
6 cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
7 cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
8 oveq1 x = X x G z = X G z
9 8 mpteq2dv x = X z 0 1 x G z = z 0 1 X G z
10 9 eqeq2d x = X F f = z 0 1 x G z F f = z 0 1 X G z
11 fveq2 x = X H x = H X
12 11 eqeq2d x = X f 0 = H x f 0 = H X
13 10 12 anbi12d x = X F f = z 0 1 x G z f 0 = H x F f = z 0 1 X G z f 0 = H X
14 13 riotabidv x = X ι f II Cn C | F f = z 0 1 x G z f 0 = H x = ι f II Cn C | F f = z 0 1 X G z f 0 = H X
15 14 fveq1d x = X ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = ι f II Cn C | F f = z 0 1 X G z f 0 = H X y
16 fveq2 y = Y ι f II Cn C | F f = z 0 1 X G z f 0 = H X y = ι f II Cn C | F f = z 0 1 X G z f 0 = H X Y
17 fvex ι f II Cn C | F f = z 0 1 X G z f 0 = H X Y V
18 15 16 7 17 ovmpo X 0 1 Y 0 1 X K Y = ι f II Cn C | F f = z 0 1 X G z f 0 = H X Y