Metamath Proof Explorer


Theorem cxple2a

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion cxple2a A B C 0 A 0 C A B A C B C

Proof

Step Hyp Ref Expression
1 simpl3 A B C 0 A 0 C A B 0 < C A B
2 simp11 A B C 0 A 0 C A B A
3 2 adantr A B C 0 A 0 C A B 0 < C A
4 simpl2l A B C 0 A 0 C A B 0 < C 0 A
5 simp12 A B C 0 A 0 C A B B
6 5 adantr A B C 0 A 0 C A B 0 < C B
7 0red A B C 0 A 0 C A B 0 < C 0
8 7 3 6 4 1 letrd A B C 0 A 0 C A B 0 < C 0 B
9 simp13 A B C 0 A 0 C A B C
10 9 anim1i A B C 0 A 0 C A B 0 < C C 0 < C
11 elrp C + C 0 < C
12 10 11 sylibr A B C 0 A 0 C A B 0 < C C +
13 cxple2 A 0 A B 0 B C + A B A C B C
14 3 4 6 8 12 13 syl221anc A B C 0 A 0 C A B 0 < C A B A C B C
15 1 14 mpbid A B C 0 A 0 C A B 0 < C A C B C
16 1le1 1 1
17 16 a1i A B C 0 A 0 C A B 0 = C 1 1
18 2 recnd A B C 0 A 0 C A B A
19 cxp0 A A 0 = 1
20 18 19 syl A B C 0 A 0 C A B A 0 = 1
21 oveq2 0 = C A 0 = A C
22 20 21 sylan9req A B C 0 A 0 C A B 0 = C 1 = A C
23 5 recnd A B C 0 A 0 C A B B
24 cxp0 B B 0 = 1
25 23 24 syl A B C 0 A 0 C A B B 0 = 1
26 oveq2 0 = C B 0 = B C
27 25 26 sylan9req A B C 0 A 0 C A B 0 = C 1 = B C
28 17 22 27 3brtr3d A B C 0 A 0 C A B 0 = C A C B C
29 simp2r A B C 0 A 0 C A B 0 C
30 0re 0
31 leloe 0 C 0 C 0 < C 0 = C
32 30 9 31 sylancr A B C 0 A 0 C A B 0 C 0 < C 0 = C
33 29 32 mpbid A B C 0 A 0 C A B 0 < C 0 = C
34 15 28 33 mpjaodan A B C 0 A 0 C A B A C B C