Metamath Proof Explorer


Theorem cycsubggenodd

Description: Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubggenodd.1 B = Base G
cycsubggenodd.2 · ˙ = G
cycsubggenodd.3 O = od G
cycsubggenodd.4 φ G Grp
cycsubggenodd.5 φ A B
cycsubggenodd.6 φ C = ran n n · ˙ A
Assertion cycsubggenodd φ O A = if C Fin C 0

Proof

Step Hyp Ref Expression
1 cycsubggenodd.1 B = Base G
2 cycsubggenodd.2 · ˙ = G
3 cycsubggenodd.3 O = od G
4 cycsubggenodd.4 φ G Grp
5 cycsubggenodd.5 φ A B
6 cycsubggenodd.6 φ C = ran n n · ˙ A
7 eqid n n · ˙ A = n n · ˙ A
8 1 3 2 7 dfod2 G Grp A B O A = if ran n n · ˙ A Fin ran n n · ˙ A 0
9 4 5 8 syl2anc φ O A = if ran n n · ˙ A Fin ran n n · ˙ A 0
10 6 eqcomd φ ran n n · ˙ A = C
11 10 eleq1d φ ran n n · ˙ A Fin C Fin
12 10 fveq2d φ ran n n · ˙ A = C
13 11 12 ifbieq1d φ if ran n n · ˙ A Fin ran n n · ˙ A 0 = if C Fin C 0
14 9 13 eqtrd φ O A = if C Fin C 0