Metamath Proof Explorer


Theorem cycsubmcom

Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element A of the monoid. (Contributed by AV, 20-Jan-2024)

Ref Expression
Hypotheses cycsubmcom.b B=BaseG
cycsubmcom.t ·˙=G
cycsubmcom.f F=x0x·˙A
cycsubmcom.c C=ranF
cycsubmcom.p +˙=+G
Assertion cycsubmcom GMndABXCYCX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 cycsubmcom.b B=BaseG
2 cycsubmcom.t ·˙=G
3 cycsubmcom.f F=x0x·˙A
4 cycsubmcom.c C=ranF
5 cycsubmcom.p +˙=+G
6 1 2 3 4 cycsubmel cCi0c=i·˙A
7 6 biimpi cCi0c=i·˙A
8 7 adantl GMndABXCYCcCi0c=i·˙A
9 8 ralrimiva GMndABXCYCcCi0c=i·˙A
10 simplll GMndABXCYCm0n0GMnd
11 simprl GMndABXCYCm0n0m0
12 simprr GMndABXCYCm0n0n0
13 simpllr GMndABXCYCm0n0AB
14 1 2 5 mulgnn0dir GMndm0n0ABm+n·˙A=m·˙A+˙n·˙A
15 10 11 12 13 14 syl13anc GMndABXCYCm0n0m+n·˙A=m·˙A+˙n·˙A
16 15 ralrimivva GMndABXCYCm0n0m+n·˙A=m·˙A+˙n·˙A
17 simprl GMndABXCYCXC
18 simprr GMndABXCYCYC
19 nn0sscn 0
20 19 a1i GMndABXCYC0
21 9 16 17 18 20 cyccom GMndABXCYCX+˙Y=Y+˙X