Metamath Proof Explorer


Theorem cyggic

Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygctb.b B=BaseG
cygctb.c C=BaseH
Assertion cyggic GCycGrpHCycGrpG𝑔HBC

Proof

Step Hyp Ref Expression
1 cygctb.b B=BaseG
2 cygctb.c C=BaseH
3 1 2 gicen G𝑔HBC
4 eqid ifBFinB0=ifBFinB0
5 eqid /ifBFinB0=/ifBFinB0
6 1 4 5 cygzn GCycGrpG𝑔/ifBFinB0
7 6 ad2antrr GCycGrpHCycGrpBCG𝑔/ifBFinB0
8 enfi BCBFinCFin
9 8 adantl GCycGrpHCycGrpBCBFinCFin
10 hasheni BCB=C
11 10 adantl GCycGrpHCycGrpBCB=C
12 9 11 ifbieq1d GCycGrpHCycGrpBCifBFinB0=ifCFinC0
13 12 fveq2d GCycGrpHCycGrpBC/ifBFinB0=/ifCFinC0
14 eqid ifCFinC0=ifCFinC0
15 eqid /ifCFinC0=/ifCFinC0
16 2 14 15 cygzn HCycGrpH𝑔/ifCFinC0
17 16 ad2antlr GCycGrpHCycGrpBCH𝑔/ifCFinC0
18 gicsym H𝑔/ifCFinC0/ifCFinC0𝑔H
19 17 18 syl GCycGrpHCycGrpBC/ifCFinC0𝑔H
20 13 19 eqbrtrd GCycGrpHCycGrpBC/ifBFinB0𝑔H
21 gictr G𝑔/ifBFinB0/ifBFinB0𝑔HG𝑔H
22 7 20 21 syl2anc GCycGrpHCycGrpBCG𝑔H
23 22 ex GCycGrpHCycGrpBCG𝑔H
24 3 23 impbid2 GCycGrpHCycGrpG𝑔HBC