Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cygctb.b | |
|
cygctb.c | |
||
Assertion | cyggic | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.b | |
|
2 | cygctb.c | |
|
3 | 1 2 | gicen | |
4 | eqid | |
|
5 | eqid | |
|
6 | 1 4 5 | cygzn | |
7 | 6 | ad2antrr | |
8 | enfi | |
|
9 | 8 | adantl | |
10 | hasheni | |
|
11 | 10 | adantl | |
12 | 9 11 | ifbieq1d | |
13 | 12 | fveq2d | |
14 | eqid | |
|
15 | eqid | |
|
16 | 2 14 15 | cygzn | |
17 | 16 | ad2antlr | |
18 | gicsym | |
|
19 | 17 18 | syl | |
20 | 13 19 | eqbrtrd | |
21 | gictr | |
|
22 | 7 20 21 | syl2anc | |
23 | 22 | ex | |
24 | 3 23 | impbid2 | |