Metamath Proof Explorer


Theorem cyggic

Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygctb.b B = Base G
cygctb.c C = Base H
Assertion cyggic G CycGrp H CycGrp G 𝑔 H B C

Proof

Step Hyp Ref Expression
1 cygctb.b B = Base G
2 cygctb.c C = Base H
3 1 2 gicen G 𝑔 H B C
4 eqid if B Fin B 0 = if B Fin B 0
5 eqid / if B Fin B 0 = / if B Fin B 0
6 1 4 5 cygzn G CycGrp G 𝑔 / if B Fin B 0
7 6 ad2antrr G CycGrp H CycGrp B C G 𝑔 / if B Fin B 0
8 enfi B C B Fin C Fin
9 8 adantl G CycGrp H CycGrp B C B Fin C Fin
10 hasheni B C B = C
11 10 adantl G CycGrp H CycGrp B C B = C
12 9 11 ifbieq1d G CycGrp H CycGrp B C if B Fin B 0 = if C Fin C 0
13 12 fveq2d G CycGrp H CycGrp B C / if B Fin B 0 = / if C Fin C 0
14 eqid if C Fin C 0 = if C Fin C 0
15 eqid / if C Fin C 0 = / if C Fin C 0
16 2 14 15 cygzn H CycGrp H 𝑔 / if C Fin C 0
17 16 ad2antlr G CycGrp H CycGrp B C H 𝑔 / if C Fin C 0
18 gicsym H 𝑔 / if C Fin C 0 / if C Fin C 0 𝑔 H
19 17 18 syl G CycGrp H CycGrp B C / if C Fin C 0 𝑔 H
20 13 19 eqbrtrd G CycGrp H CycGrp B C / if B Fin B 0 𝑔 H
21 gictr G 𝑔 / if B Fin B 0 / if B Fin B 0 𝑔 H G 𝑔 H
22 7 20 21 syl2anc G CycGrp H CycGrp B C G 𝑔 H
23 22 ex G CycGrp H CycGrp B C G 𝑔 H
24 3 23 impbid2 G CycGrp H CycGrp G 𝑔 H B C