Metamath Proof Explorer


Theorem dalem27

Description: Lemma for dath . Show that the line G P intersects the dummy center of perspectivity c . (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem23.m ˙=meetK
dalem23.o O=LPlanesK
dalem23.y Y=P˙Q˙R
dalem23.z Z=S˙T˙U
dalem23.g G=c˙P˙d˙S
Assertion dalem27 φY=Zψc˙G˙P

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem23.m ˙=meetK
7 dalem23.o O=LPlanesK
8 dalem23.y Y=P˙Q˙R
9 dalem23.z Z=S˙T˙U
10 dalem23.g G=c˙P˙d˙S
11 1 dalemkelat φKLat
12 11 3ad2ant1 φY=ZψKLat
13 1 dalemkehl φKHL
14 13 3ad2ant1 φY=ZψKHL
15 5 dalemccea ψcA
16 15 3ad2ant3 φY=ZψcA
17 1 dalempea φPA
18 17 3ad2ant1 φY=ZψPA
19 eqid BaseK=BaseK
20 19 3 4 hlatjcl KHLcAPAc˙PBaseK
21 14 16 18 20 syl3anc φY=Zψc˙PBaseK
22 5 dalemddea ψdA
23 22 3ad2ant3 φY=ZψdA
24 1 dalemsea φSA
25 24 3ad2ant1 φY=ZψSA
26 19 3 4 hlatjcl KHLdASAd˙SBaseK
27 14 23 25 26 syl3anc φY=Zψd˙SBaseK
28 19 2 6 latmle1 KLatc˙PBaseKd˙SBaseKc˙P˙d˙S˙c˙P
29 12 21 27 28 syl3anc φY=Zψc˙P˙d˙S˙c˙P
30 10 29 eqbrtrid φY=ZψG˙c˙P
31 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
32 1 2 3 4 7 8 dalemply φP˙Y
33 32 3ad2ant1 φY=ZψP˙Y
34 1 2 3 4 5 6 7 8 9 10 dalem24 φY=Zψ¬G˙Y
35 nbrne2 P˙Y¬G˙YPG
36 35 necomd P˙Y¬G˙YGP
37 33 34 36 syl2anc φY=ZψGP
38 2 3 4 hlatexch2 KHLGAcAPAGPG˙c˙Pc˙G˙P
39 14 31 16 18 37 38 syl131anc φY=ZψG˙c˙Pc˙G˙P
40 30 39 mpd φY=Zψc˙G˙P