Metamath Proof Explorer


Theorem dalem43

Description: Lemma for dath . Planes G H I and Y are different. (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem38.m ˙=meetK
dalem38.o O=LPlanesK
dalem38.y Y=P˙Q˙R
dalem38.z Z=S˙T˙U
dalem38.g G=c˙P˙d˙S
dalem38.h H=c˙Q˙d˙T
dalem38.i I=c˙R˙d˙U
Assertion dalem43 φY=ZψG˙H˙IY

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem38.m ˙=meetK
7 dalem38.o O=LPlanesK
8 dalem38.y Y=P˙Q˙R
9 dalem38.z Z=S˙T˙U
10 dalem38.g G=c˙P˙d˙S
11 dalem38.h H=c˙Q˙d˙T
12 dalem38.i I=c˙R˙d˙U
13 1 dalemkelat φKLat
14 13 3ad2ant1 φY=ZψKLat
15 1 dalemkehl φKHL
16 15 3ad2ant1 φY=ZψKHL
17 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
18 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
19 eqid BaseK=BaseK
20 19 3 4 hlatjcl KHLGAHAG˙HBaseK
21 16 17 18 20 syl3anc φY=ZψG˙HBaseK
22 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
23 19 4 atbase IAIBaseK
24 22 23 syl φY=ZψIBaseK
25 19 2 3 latlej2 KLatG˙HBaseKIBaseKI˙G˙H˙I
26 14 21 24 25 syl3anc φY=ZψI˙G˙H˙I
27 1 2 3 4 5 6 7 8 9 12 dalem35 φY=Zψ¬I˙Y
28 nbrne1 I˙G˙H˙I¬I˙YG˙H˙IY
29 26 27 28 syl2anc φY=ZψG˙H˙IY