Description: Lemma for dath . Rotate triangles Y = P Q R and Z = S T U to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalem.ph | |
|
dalem.l | |
||
dalem.j | |
||
dalem.a | |
||
dalem.ps | |
||
dalemrotps.y | |
||
Assertion | dalemrotps | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | |
|
2 | dalem.l | |
|
3 | dalem.j | |
|
4 | dalem.a | |
|
5 | dalem.ps | |
|
6 | dalemrotps.y | |
|
7 | 5 | dalemccea | |
8 | 5 | dalemddea | |
9 | 7 8 | jca | |
10 | 9 | adantl | |
11 | 5 | dalem-ccly | |
12 | 11 | adantl | |
13 | 1 3 4 | dalemqrprot | |
14 | 6 13 | eqtr4id | |
15 | 14 | breq2d | |
16 | 15 | adantr | |
17 | 12 16 | mtbid | |
18 | 5 | dalemccnedd | |
19 | 18 | necomd | |
20 | 19 | adantl | |
21 | 5 | dalem-ddly | |
22 | 21 | adantl | |
23 | 14 | breq2d | |
24 | 23 | adantr | |
25 | 22 24 | mtbid | |
26 | 5 | dalemclccjdd | |
27 | 26 | adantl | |
28 | 20 25 27 | 3jca | |
29 | 10 17 28 | 3jca | |