Metamath Proof Explorer


Theorem dalemrotps

Description: Lemma for dath . Rotate triangles Y = P Q R and Z = S T U to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalemrotps.y Y=P˙Q˙R
Assertion dalemrotps φψcAdA¬c˙Q˙R˙Pdc¬d˙Q˙R˙PC˙c˙d

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalemrotps.y Y=P˙Q˙R
7 5 dalemccea ψcA
8 5 dalemddea ψdA
9 7 8 jca ψcAdA
10 9 adantl φψcAdA
11 5 dalem-ccly ψ¬c˙Y
12 11 adantl φψ¬c˙Y
13 1 3 4 dalemqrprot φQ˙R˙P=P˙Q˙R
14 6 13 eqtr4id φY=Q˙R˙P
15 14 breq2d φc˙Yc˙Q˙R˙P
16 15 adantr φψc˙Yc˙Q˙R˙P
17 12 16 mtbid φψ¬c˙Q˙R˙P
18 5 dalemccnedd ψcd
19 18 necomd ψdc
20 19 adantl φψdc
21 5 dalem-ddly ψ¬d˙Y
22 21 adantl φψ¬d˙Y
23 14 breq2d φd˙Yd˙Q˙R˙P
24 23 adantr φψd˙Yd˙Q˙R˙P
25 22 24 mtbid φψ¬d˙Q˙R˙P
26 5 dalemclccjdd ψC˙c˙d
27 26 adantl φψC˙c˙d
28 20 25 27 3jca φψdc¬d˙Q˙R˙PC˙c˙d
29 10 17 28 3jca φψcAdA¬c˙Q˙R˙Pdc¬d˙Q˙R˙PC˙c˙d