Metamath Proof Explorer


Theorem dalemrotps

Description: Lemma for dath . Rotate triangles Y = P Q R and Z = S T U to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalemrotps.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
Assertion dalemrotps ( ( 𝜑𝜓 ) → ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 ( ( 𝑄 𝑅 ) 𝑃 ) ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 ( ( 𝑄 𝑅 ) 𝑃 ) ∧ 𝐶 ( 𝑐 𝑑 ) ) ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalemrotps.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
7 5 dalemccea ( 𝜓𝑐𝐴 )
8 5 dalemddea ( 𝜓𝑑𝐴 )
9 7 8 jca ( 𝜓 → ( 𝑐𝐴𝑑𝐴 ) )
10 9 adantl ( ( 𝜑𝜓 ) → ( 𝑐𝐴𝑑𝐴 ) )
11 5 dalem-ccly ( 𝜓 → ¬ 𝑐 𝑌 )
12 11 adantl ( ( 𝜑𝜓 ) → ¬ 𝑐 𝑌 )
13 1 3 4 dalemqrprot ( 𝜑 → ( ( 𝑄 𝑅 ) 𝑃 ) = ( ( 𝑃 𝑄 ) 𝑅 ) )
14 6 13 eqtr4id ( 𝜑𝑌 = ( ( 𝑄 𝑅 ) 𝑃 ) )
15 14 breq2d ( 𝜑 → ( 𝑐 𝑌𝑐 ( ( 𝑄 𝑅 ) 𝑃 ) ) )
16 15 adantr ( ( 𝜑𝜓 ) → ( 𝑐 𝑌𝑐 ( ( 𝑄 𝑅 ) 𝑃 ) ) )
17 12 16 mtbid ( ( 𝜑𝜓 ) → ¬ 𝑐 ( ( 𝑄 𝑅 ) 𝑃 ) )
18 5 dalemccnedd ( 𝜓𝑐𝑑 )
19 18 necomd ( 𝜓𝑑𝑐 )
20 19 adantl ( ( 𝜑𝜓 ) → 𝑑𝑐 )
21 5 dalem-ddly ( 𝜓 → ¬ 𝑑 𝑌 )
22 21 adantl ( ( 𝜑𝜓 ) → ¬ 𝑑 𝑌 )
23 14 breq2d ( 𝜑 → ( 𝑑 𝑌𝑑 ( ( 𝑄 𝑅 ) 𝑃 ) ) )
24 23 adantr ( ( 𝜑𝜓 ) → ( 𝑑 𝑌𝑑 ( ( 𝑄 𝑅 ) 𝑃 ) ) )
25 22 24 mtbid ( ( 𝜑𝜓 ) → ¬ 𝑑 ( ( 𝑄 𝑅 ) 𝑃 ) )
26 5 dalemclccjdd ( 𝜓𝐶 ( 𝑐 𝑑 ) )
27 26 adantl ( ( 𝜑𝜓 ) → 𝐶 ( 𝑐 𝑑 ) )
28 20 25 27 3jca ( ( 𝜑𝜓 ) → ( 𝑑𝑐 ∧ ¬ 𝑑 ( ( 𝑄 𝑅 ) 𝑃 ) ∧ 𝐶 ( 𝑐 𝑑 ) ) )
29 10 17 28 3jca ( ( 𝜑𝜓 ) → ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 ( ( 𝑄 𝑅 ) 𝑃 ) ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 ( ( 𝑄 𝑅 ) 𝑃 ) ∧ 𝐶 ( 𝑐 𝑑 ) ) ) )